53 resultados para elicitor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plants that have been wounded by insects or other herbivores may be more susceptible to infection by adventitious microbes. Wound-induced signal molecules, which serve to induce responses in the plant that retard further feeding, might also act to prepare a plant for possible pathogen attack. We have examined the effect of a wound-generated systemic messenger (systemin) on a pathogen-stimulated defense-response marker, the oxidative burst. We observed that neither systemin nor its inactive analog (A-17) was able to directly induce H2O2 biosynthesis in suspension-cultured tomato (Lycopersicon esculentum L.) cells, regardless of the duration of exposure of the cells to the two peptides. Similarly, neither systemin nor A-17 was capable of modifying an oligogalacturonide-elicited oxidative burst, as long as elicitor addition occurred within minutes of treatment with systemin or A-17. In contrast, preexposure of the cell cultures to systemin (but not to A-17) led to a time-dependent enhancement of the oligogalacturonide-elicited oxidative burst. By 12 h of exposure, the H2O2 biosynthetic capacity of systemin-treated cells exceeded that of the control cells by a factor of 16 ± 2. A similar up-regulation by systemin of a mechanically stimulated oxidative burst was also observed. Because the systemin-induced augmentation in oxidant synthesis is quantitatively prevented by coincubation with 2 μm cycloheximide, and because the oxidative burst of oligogalacturonic acid-elicited control cells (no systemin exposure) is unaffected by preincubation with cycloheximide, we conclude that systemin enhancement of the tomato-cell oxidative burst requires protein synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cultured cells of rose (Rosa damascena) treated with an elicitor derived from Phytophthora spp. and suspension-cultured cells of French bean (Phaseolus vulgaris) treated with an elicitor derived from the cell walls of Colletotrichum lindemuthianum both produced H2O2. It has been hypothesized that in rose cells H2O2 is produced by a plasma membrane NAD(P)H oxidase (superoxide synthase), whereas in bean cells H2O2 is derived directly from cell wall peroxidases following extracellular alkalinization and the appearance of a reductant. In the rose/Phytophthora spp. system treated with N,N-diethyldithiocarbamate, superoxide was detected by a N,N′-dimethyl-9,9′-biacridium dinitrate-dependent chemiluminescence; in contrast, in the bean/C. lindemuthianum system, no superoxide was detected, with or without N,N-diethyldithiocarbamate. When rose cells were washed free of medium (containing cell wall peroxidase) and then treated with Phytophthora spp. elicitor, they accumulated a higher maximum concentration of H2O2 than when treated without the washing procedure. In contrast, a washing treatment reduced the H2O2 accumulated by French bean cells treated with C. lindemuthianum elicitor. Rose cells produced reductant capable of stimulating horseradish (Armoracia lapathifolia) peroxidase to form H2O2 but did not have a peroxidase capable of forming H2O2 in the presence of reductant. Rose and French bean cells thus appear to be responding by different mechanisms to generate the oxidative burst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, the biosynthesis of an unusual membrane phospholipid, N-acylphosphatidylethanolamine (NAPE), was found to increase in elicitor-treated tobacco (Nicotiana tabacum L.) cells (K.D. Chapman, A. Conyers-Hackson, R.A. Moreau, S. Tripathy [1995] Physiol Plant 95: 120–126). Here we report that before induction of NAPE biosynthesis, N-acylethanolamine (NAE) is released from NAPE in cultured tobacco cells 10 min after treatment with the fungal elicitor xylanase. In radiolabeling experiments [14C]NAE (labeled on the ethanolamine carbons) increased approximately 6-fold in the culture medium, whereas [14C]NAPE associated with cells decreased approximately 5-fold. Two predominant NAE molecular species, N-lauroylethanolamine and N-myristoylethanolamine, were specifically identified by gas chromatography-mass spectrometry in lipids extracted from culture medium, and both increased in concentration after elicitor treatment. NAEs were found to accumulate extracellularly only. A microsomal phospholipase D activity was discovered that formed NAE from NAPE; its activity in vitro was stimulated about 20-fold by mastoparan, suggesting that NAPE hydrolysis is highly regulated, perhaps by G-proteins. Furthermore, an NAE amidohydrolase activity that catalyzed the hydrolysis of NAE in vitro was detected in homogenates of tobacco cells. Collectively, these results characterize structurally a new class of plant lipids and identify the enzymatic machinery involved in its formation and inactivation in elicitor-treated tobacco cells. Recent evidence indicating a signaling role for NAPE metabolism in mammalian cells (H.H.O. Schmid, P.C. Schmid, V. Natarajan [1996] Chem Phys Lipids 80: 133–142) raises the possibility that a similar mechanism may operate in plant cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a complete gene family encoding phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in one particular plant species. In parsley (Petroselinum crispum), the PAL gene family comprises two closely related members, PAL1 and PAL2, whose TATA-proximal promoter and coding regions are almost identical, and two additional members, PAL3 and PAL4, with less similarity to one another and to the PAL1 and PAL2 genes. Using gene-specific probes derived from the 5' untranslated regions of PAL1/2, PAL3, and PAL4, we determined the respective mRNA levels in parsley leaves and cell cultures treated with UV light or fungal elicitor and in wounded leaves and roots. For comparison, the functionally closely related cinnamate 4-hydroxylase (C4H) and 4-coumarate:CoA ligase (4CL) mRNAs were measured in parallel. The results indicate various degrees of differential responsiveness of PAL4 relative to the other PAL gene family members, in contrast to a high degree of coordination in the overall expression of the PAL, C4H, and 4CL genes. The only significant sequence similarities shared by all four PAL gene promoters are a TATA-proximal set of three putative cis-acting elements (boxes P, A, and L). None of these elements alone, or the promoter region containing all of them together, conferred elicitor or light responsiveness on a reporter gene in transient expression assays. The elements appear to be necessary but not sufficient for elicitor- or light-mediated PAL gene activation, similar to the situation previously reported for 4CL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant defense against microbial pathogens and herbivores relies heavily on the induction of defense proteins and low molecular weight antibiotics. The signals between perception of the aggression, gene activation, and the subsequent biosynthesis of secondary compounds are assumed to be pentacylic oxylipin derivatives. The rapid, but transient, synthesis of cis-jasmonic acid was demonstrated after insect attack on a food plant and by microbial elicitor addition to plant suspension cultures. This effect is highly specific and not caused by a number of environmental stresses such as light, heavy metals, or cold or heat shock. Elicitation of Eschscholtzia cell cultures also led to a rapid alkalinization of the growth medium prior to jasmonate formation. Inhibition of this alkalinization process by the protein kinase inhibitor staurosporine also inhibited jasmonate formation. The induction of specific enzymes in the benzo[c]phenanthridine alkaloid pathway leading to the antimicrobial sanguinarine was induced to a qualitatively and quantitatively similar extent by fungal elicitor, methyl jasmonate, and its linolenic acid-derived precursor 12-oxophytodienoic acid. It is herein proposed that a second oxylipid cascade may exist in plants starting from linoleic acid via 15,16-dihydro-12-oxophytodienoic acid to 9,10-dihydrojasmonate. Experiments with synthetic trihomojasmonate demonstrated that beta-oxidation is not a prerequisite for biological activity and that 12-oxophytodienoic acid and derivatives are most likely fully active as signal transducers. Octadecanoic acid-derived compounds are essential elements in modulating the synthesis of antibiotic compounds and are thus integral to plant defense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing loss of conventional fungicides due to pathogen resistance and general unacceptability in terms of public and environmental risk have favoured the introduction of integrated pest management (IPM) programmes. Induction of natural disease resistance (NDR) in harvested horticultural crops using physical, biological and/or chemical elicitors has received increasing attention over recent years, it being considered a preferred strategy for disease management. This article reviews the enhancement of constitutive and inducible antifungal compounds and suppression of postharvest diseases through using elicitors. The effect of timing of pre- and/or postharvest elicitor treatment and environment on the degree of elicitation and the potential for inducing local acquired resistance, systemic acquired resistance and/or induced systemic resistance to reduce postharvest disease is discussed. The review highlights that more applied and basic research is required to understand the role that induced NDR can play in achieving practical suppression of postharvest diseases as part of an IPM approach. (C) 2003 Elsevier B.V. All rights reserved.