227 resultados para electroencephalogram
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Body and brain undergo several changes with aging. One of these changes is the loss of neuroplasticity, which leads to the decrease of cognitive abilities. Hence the necessity of stopping or reversing these changes is of utmost importance to contemporary society. In the present work, electroencephalogram (EEG) markers of cognitive decline are sought whilst the subjects perform the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young and elder participants. The results suggest that coherence on theta and alpha EEG rhythms decrease with aging and increase with performance. Additionally, theta phase coherence seems more sensitive to performance, while alpha synchronization appears as a potential ageing marker.
Resumo:
A Sociedade Europeia de Pesquisa do Sono realizou muito recentemente um estudo, onde mostrou que a prevalência média de adormecimento ao volante nos últimos 2 anos foi de 17%. Além disto, tem sido provado por todo o mundo que a sonolência durante a condução é uma das principais causas de acidentes de trânsito. Torna-se assim conveniente, o desenvolvimento de sistemas que analisem a suscetibilidade de um determinado condutor para adormecer no trânsito, bem como de ferramentas que monitorem em tempo real o estado físico e mental do condutor, para alertarem nos momentos críticos. Apesar do estudo do sono se ter iniciado há vários anos, a maioria das investigações focaram-se no ciclo normal do sono, estudando os indivíduos de forma relaxada e de olhos fechados. Só mais recentemente, têm surgido os estudos que se focam nas situações de sonolência em atividade, como _e o caso da condução. Uma grande parte Dos estudos da sonolência em condução têm utilizado a eletroencefalografia (EEG), de forma a perceber se existem alterações nas diferentes bandas de frequência desta, que possam indicar o estado de sonolência do condutor. Além disso, a evolução da sonolência a partir de alterações no piscar dos olhos (que podem ser vistas nos sinais EEG) também tem sido alvo de grande pesquisa, tendo vindo a revelar resultados bastante promissores. Neste contexto e em parceria com a empresa HealthyRoad, esta tese está integrada no projeto HealthyDrive, que visa o desenvolvimento de um sistema de alerta e deteção de sinais de fadiga e sonolência nos condutores de veículos automóveis. A contribuição desta tese no projeto prendeu-se com o estudo da sonolência dos indivíduos em condução a partir de sinais EEG, para desta forma investigar possíveis indicadores dos diferentes níveis desta que possam ser utilizados pela empresa no projeto. Foram recolhidos e analisados 17 sinais EEG de indivíduos em simulação de condução. Além disso foram desenvolvidos dois métodos de análise destes sinais: O primeiro para a deteção e análise dos piscar de olhos a partir de EEG, o segundo para análise do espetro de potência. Ambos os métodos foram utilizados para analisar os sinais recolhidos e investigar que tipo de relação existe entre a sonolência do condutor e as alterações nos piscares dos olhos, bem como as alterações do espetro do EEG. Os resultados mostraram uma correlação entre a duração do piscar de olhos e a sonolência do condutor. Com o aumento da sonolência velicou-se um aumento da duração do piscar, desencadeado principalmente pelo aumento na duração de fecho, que chegou aos 51.2%. Em relação ao espectro de potência, os resultados sugerem que a potência relativa de todas as bandas analisadas fornecem informações relevantes sobre a sonolência do condutor. Além disso, o parâmetro (_+_)/_ demostrou estar relacionado com variações da sonolência, diminuindo com o seu avanço e aumentando significativamente (111%) no instante em que os condutores adormeceram.
Resumo:
Objective: The epilepsy associated with the hypothalamic hamartomas constitutes a syndrome with peculiar seizures, usually refractory to medical therapy, mild cognitive delay, behavioural problems and multifocal spike activity in the scalp electroencephalogram (EEG). The cortical origin of spikes has been widely assumed but not specifically demonstrated. Methods: We present results of a source analysis of interictal spikes from 4 patients (age 2–25 years) with epilepsy and hypothalamic hamartoma, using EEG scalp recordings (32 electrodes) and realistic boundary element models constructed from volumetric magnetic resonance imaging (MRIs). Multifocal spike activity was the most common finding, distributed mainly over the frontal and temporal lobes. A spike classification based on scalp topography was done and averaging within each class performed to improve the signal to noise ratio. Single moving dipole models were used, as well as the Rap-MUSIC algorithm. Results: All spikes with good signal to noise ratio were best explained by initial deep sources in the neighbourhood of the hamartoma, with late sources located in the cortex. Not a single patient could have his spike activity explained by a combination of cortical sources. Conclusions: Overall, the results demonstrate a consistent origin of spike activity in the subcortical region in the neighbourhood of the hamartoma, with late spread to cortical areas.
Resumo:
Involuntary rhythmic leg movements in childhood is an uncommon condition, the generators of which remain unknown. We report on a male 3 years of age with distinct features providing important clues concerning the location of one of these generators. At the age of 7 months, the previously healthy young male started with low frequency, rhythmic, and continuous (both during wakefulness and sleep) flexion/extension movements of the lower limbs. Movements interfered significantly with gait acquisition, and, despite normal cognitive development, he was able to walk only at age 2 years, 4 months. The neurologic examination revealed the absence of automatic stepping in the neonatal period, but was otherwise normal. A polygraphic electroencephalogram/electromyogram EEG/EMG) recording, at the age of 2 years, 9 months, revealed rhythmic and synchronous legs with EMG activity at 0.5 Hz. A more complete polygraphic recording at the age of 3 years, 10 months, showed a lower frequency (0.35 Hz) for the movements, which were time-locked with the respiratory cycle. Magnetic resonance imaging (MRI) of the brain revealed an increased T2 signal in the upper medulla-lower pons regions. The generator of the rhythmic legs movements is postulated to be the respiratory center, connecting with the reticulospinal projecting neurons through an aberrant pathway.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
based on the report for the Doctoral Conference of the PhD programme in Technology Assessment, held at FCT-UNL Campus, Monte de Caparica, July 2013. The PhD thesis has the supervision of Dr. Salomé Almeida (Central Hospital of Lisbon), and co-supervision of Prof. Manuel Ortigueira (FCT-UNL).
Resumo:
Body and brain undergo several changes with aging. One of the domains in which these changes are more remarkable relates with cognitive performance. In the present work, electroencephalogram (EEG) markers (power spectral density and spectral coherence) of age-related cognitive decline were sought whilst the subjects performed the Wisconsin Card Sorting Test (WCST). Considering the expected age-related cognitive deficits, WCST was applied to young, mid-age and elderly participants, and the theta and alpha frequency bands were analyzed. From the results herein presented, higher theta and alpha power were found to be associated with a good performance in the WCST of younger subjects. Additionally, higher theta and alpha coherence were also associated with good performance and were shown to decline with age and a decrease in alpha peak frequency seems to be associated with aging. Additionally, inter-hemispheric long-range coherences and parietal theta power were identified as age-independent EEG correlates of cognitive performance. In summary, these data reveals age-dependent as well as age-independent EEG correlates of cognitive performance that contribute to the understanding of brain aging and related cognitive deficits.
Resumo:
Vision, Speed, Electroencephalogram, Gamma Band Activity
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis likely has a wider clinical spectrum than previously recognized. This article reports a previously healthy 16-year-old girl who was diagnosed with anti-NMDA receptor encephalitis 3 months after onset of severe depression with psychotic features. She had no neurological manifestations, and cerebral magnetic resonance imaging (MRI) was normal. Slow background on electroencephalogram and an oligoclonal band in the cerebrospinal fluid prompted the search for anti-NMDA receptor antibodies. She markedly improved over time but remained with mild neuropsychological sequelae after a trial of late immunotherapy. Only a high index of suspicion enables recognition of the milder forms of the disease masquerading as primary psychiatric disorders.
T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites.
Resumo:
T-type Ca2+ channels (T channels) underlie rhythmic burst discharges during neuronal oscillations that are typical during sleep. However, the Ca2+-dependent effectors that are selectively regulated by T currents remain unknown. We found that, in dendrites of nucleus reticularis thalami (nRt), intracellular Ca2+ concentration increases were dominated by Ca2+ influx through T channels and shaped rhythmic bursting via competition between Ca2+-dependent small-conductance (SK)-type K+ channels and Ca2+ uptake pumps. Oscillatory bursting was initiated via selective activation of dendritically located SK2 channels, whereas Ca2+ sequestration by sarco/endoplasmic reticulum Ca2+-ATPases (SERCAs) and cumulative T channel inactivation dampened oscillations. Sk2-/- (also known as Kcnn2) mice lacked cellular oscillations, showed a greater than threefold reduction in low-frequency rhythms in the electroencephalogram of non-rapid-eye-movement sleep and had disrupted sleep. Thus, the interplay of T channels, SK2 channels and SERCAs in nRt dendrites comprises a specialized Ca2+ signaling triad to regulate oscillatory dynamics related to sleep.
Resumo:
Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128-256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation.
Resumo:
There are controversial reports about the effect of aging on movement preparation, and it is unclear to which extent cognitive and/or motor related cerebral processes may be affected. This study examines the age effects on electro-cortical oscillatory patterns during various motor programming tasks, in order to assess potential differences according to the mode of action selection. Twenty elderly (EP, 60-84 years) and 20 young (YP, 20-29 years) participants with normal cognition underwent 3 pre-cued response tasks (S1-S2 paradigm). S1 carried either complete information on response side (Full; stimulus-driven motor preparation), no information (None; general motor alertness), or required free response side selection (Free; internally-driven motor preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Alpha (8-12 Hz) desynchronization (ERD)/synchronization (ERS) and motor-related amplitude asymmetries (MRAA) were analyzed during the S1-S2 interval. Reaction times (RTs) to S2 were slower in EP than YP, and in None than in the other 2 tasks. There was an Age x Task interaction due to increased RTs in Free compared to Full in EP only. Central bilateral and midline activation (alpha ERD) was smaller in EP than YP in None. In Full just before S2, readiness to move was reflected by posterior midline inhibition (alpha ERS) in both groups. In Free, such inhibition was present only in YP. Moreover, MRAA showed motor activity lateralization in both groups in Full, but only in YP in Free. The results indicate reduced recruitment of motor regions for motor alertness in the elderly. They further show less efficient cerebral processes subtending free selection of movement in elders, suggesting reduced capacity for internally-driven action with age.
Resumo:
OBJECTIVE: To investigate the safety and efficacy of 50-Hz repetitive transcranial magnetic stimulation (rTMS) in the treatment of motor symptoms in Parkinson disease (PD). BACKGROUND: Progression of PD is characterized by the emergence of motor deficits that gradually respond less to dopaminergic therapy. rTMS has shown promising results in improving gait, a major cause of disability, and may provide a therapeutic alternative. Prior controlled studies suggest that an increase in stimulation frequency might enhance therapeutic efficacy. METHODS: In this randomized, double blind, sham-controlled study, the authors investigated the safety and efficacy of 50-Hz rTMS of the motor cortices in 8 sessions over 2 weeks. Assessment of safety and clinical efficacy over a 1-month period included timed tests of gait and bradykinesia, Unified Parkinson's Disease Rating Scale (UPDRS), and additional clinical, neurophysiological, and neuropsychological parameters. In addition, the safety of 50-Hz rTMS was tested with electromyography-electroencephalogram (EMG-EEG) monitoring during and after stimulation. RESULTS: The authors investigated 26 patients with mild to moderate PD: 13 received 50-Hz rTMS and 13 sham stimulation. The 50-Hz rTMS did not improve gait, bradykinesia, and global and motor UPDRS, but there appeared a short-lived "on"-state improvement in activities of daily living (UPDRS II). The 50-Hz rTMS lengthened the cortical silent period, but other neurophysiological and neuropsychological measures remained unchanged. EMG/EEG recorded no pathological increase of cortical excitability or epileptic activity. There were no adverse effects. CONCLUSION: It appears that 50-Hz rTMS of the motor cortices is safe, but it fails to improve motor performance and functional status in PD. Prolonged stimulation or other techniques with rTMS might be more efficacious but need to be established in future research.