968 resultados para electrochemical impedance


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thin films of Sn were deposited on Pt/Si substrates by sputtering technique and subjected to electrochemical lithiation studies. Electrochemical lithiation of Sn resulted in the formation of Sn-Li alloys of different compositions. Charging of Sn-coated Pt/Si electrodes was terminated at different potentials and the electrodes were examined for physicochemical properties. The scanning electron microscopy and atomic force microscopy images suggested that the Sn films expanded on lithiation. Roughness of the film increased with an increase in the quantity of Li present in Sn-Li alloy. Electrochemical impedance data suggested that the kinetics of charging became sluggish with an increase in the quantity of Li in Sn-Li alloy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size < 5 μm are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/ dopant b-naphthalene sulfonic acid (b-NSA). Microstructures obtained with scan range of 0??1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 105 to 8 x 10 cm-2. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of Β-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg-1 is obtained, which is greater than the values (350-400 Fg-1 highest) usually reported for this material. Electrochemical impedance spectroscopy proves the superc

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size <5 mu m are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/dopant beta-naphthalene sulfonic acid (beta-NSA). Microstructures obtained with scan range of 0-1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 10(5) to 8 x 10 cm(-2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of beta-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg(-1) is obtained, which is greater than the values (350-400 Fg(-1) highest) usually reported for this material. Electrochemical impedance spectroscopy proves the supercapacitance behaviour and explains the special inductive component of impedance observed in the high-frequency regime because of the globular structures of PPy deposited

Relevância:

70.00% 70.00%

Publicador:

Resumo:

LiNi0.8Co0.2O2 cathode material for lithium ion batteries is synthesized by reaction under autogenic pressure at elevated temperature (RAPET) method. The simple synthesis procedure is time and energy saving, and thus is promising for commercial application. The structure and stability of the material have been characterized by means of XRD and TG-DTA. The electrochemical properties of the LiNi0.8Co0.2O2 cathode are investigated in 2 M Li2SO4 aqueous electrolyte and they are compared to that in an organic electrolyte. A battery cell consisting of LiNi0.8Co0.2O2 as cathode in 2 M Li2SO4 solution is constructed in combination with LiTi2 (PO4)(3) as anode. The cell retained almost constant discharge capacity over hundred cycles. The electrochemical impedance spectral ( EIS) studies in aqueous and nonaqueous electrolytes revealed that the mechanism of lithium ion intercalation and deintercalation processes in LiNi0.8Co0.2O2 electrode follow almost similar mechanism in both aqueous and nonaqueous electrolytes. The chemical diffusion coefficient was calculated from slow scan rate cyclic voltammetry and EIS. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.075205jes] All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work is aimed at studying the influence of electrolyte chemistry on the voltage-time (V-T) response characteristics, phase structure, surface morphology, film growth rate and corrosion properties of titania films fabricated by micro arc oxidation (MAO) on Cp Ti. The titania films were developed with a sodium phosphate based reference electrolyte comprising the additives such as sodium carbonate (Na2CO3), sodium nitrite (NaNO2) and urea (CO(NH2)(2)). The phase composition, surface morphology, elemental composition and thickness of the films were assessed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques. The corrosion characteristics of the fabricated films were studied under Kokubo simulated body fluid (SBF) condition by potentiodynamic polarization, long term potential and linear polarization resistance (LPR) measurements and electrochemical impedance spectroscopy (EIS) methods. In addition, the corrosion characteristics of the grown films were analyzed by EIS curve fitting and equivalent circuit modeling. Salt spray test (SST) as per ASTM B 117 standard was also conducted to verify the corrosion resistance of the grown films. The XRD results showed that the titania films were composed of both anatase and rutile phases at different proportions. Besides, the films grown in carbonate and nitrite containing electrolyte systems showed an enhanced growth of their rutile phase in the 1 0 1] direction which could be attributed to the modifications introduced in the growth process by the abundant oxygen available during the process. The SEM-EDX and elemental mapping results showed that the respective electrolyte borne elements were incorporated and distributed uniformly in all the films. Among all the grown films under study, the film developed in carbonate containing electrolyte system exhibited considerably improved corrosion resistance due to suitable modifications in its structural and morphological characteristics. The rate of anatase to rutile phase transformation and the rutile growth direction were strongly influenced by the abundant oxidizing species available during the film growth process. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Zn-graphene composite coating was electrodeposited on mild steel. The graphene was synthesized by electrochemical exfoliation of graphite. Electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction techniques were used to characterize the coatings. Compared to a pure Zn coating, the Zn-graphene coating exhibited reduced grain size, reduced surface defects, hillock structures over the coating surface and an altered texture. The corrosion behavior of the coatings was examined by Tafel polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in the case of the Zn coating containing graphene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical properties of pure Sn and Sn-graphene composite coating have been determined and compared. Coatings were electrodeposited on mild steel substrates. Graphene was synthesized by the electrochemical exfoliation process using SO42- ion as the intercalating agent. Morphological and structural characterization results revealed a clear effect of graphene on altering the texture, grain size and morphology of the coating. Corrosion behavior was analyzed through potentiodynamic polarization and electrochemical impedance spectroscopic methods. A significant improvement in the corrosion resistance in terms of reduction in corrosion current and corrosion rate and increase in polarization resistance was noted in case of Sn coating containing graphene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inhibition effect of colchicine (CC) on mild steel (MS) corrosion in 1 M HCl solution has been investigated by electrochemical techniques such as electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometry and also by the gravimetric method. Polarization studies showed that CC acts as mixed type corrosion inhibitor. The inhibitor adsorption process in the MS/CC/HCl system was studied at different temperatures (303-333 K). The adsorption of CC on MS surface is an exothermic process and obeys the Langmuir adsorption isotherm. Based on potential of zero charge values and quantum chemical parameters, the mechanism of adsorption has been proposed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The electrochemical corrosion behavior of Mg-6Al-0.4Mn and Mg-6Al-4RE-0.4Mn (RE = Mischmetal) alloys is investigated in 3.5% NaCl solution. The results of corrosion process, polarization behavior, and electrochemical impedance spectroscopy of the alloys reveal that Mg-6Al-4RE-0.4Mn exhibits enhanced corrosion resistance. The addition of RE stabilizes the solid solution and modifies the passive film through a finer microstructure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aptamers, which are in vitro selected functional oligonucleotides, have been employed to design novel biosensors (i.e., aptasensors) due to their inherent selectivity, affinity, and their multifarious advantages over traditional recognition elements. In this work, we reported a multifunctional reusable label-free electrochemical biosensor based on an integrated aptamer for parallel detection of adenosine triphosphate (ATP) and alpha-thrombin, by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A An electrode as the sensing surface was modified with a part DNA duplex which contained a 5'-thiolated partly complementary strand (PCS) and a mixed aptamer (MBA).