898 resultados para electroacoustic impedance
Resumo:
This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
This paper reports investigation on the estimation of the short circuit impedance of power transformers, using fractional order calculus to analytically study the influence of the diffusion phenomena in the windings. The aim is to better characterize the medium frequency range behavior of leakage inductances of power transformer models, which include terms to represent the magnetic field diffusion process in the windings. Comparisons between calculated and measured values are shown and discussed.
Resumo:
In an underwater environment it is difficult to implement solutions for wireless communications. The existing technologies using electromagnetic waves or lasers are not very efficient due to the large attenuation in the aquatic environment. Ultrasound reveals a lower attenuation, and thus has been used in underwater long-distance communications. The much slower speed of acoustic propagation in water (about 1500 m/s) compared with that of electromagnetic and optical waves, is another limiting factor for efficient communication and networking. For high data-rates and real-time applications it is necessary to use frequencies in the MHz range, allowing communication distances of hundreds of meters with a delay of milliseconds. To achieve this goal, it is necessary to develop ultrasound transducers able to work at high frequencies and wideband, with suitable responses to digital modulations. This work shows how the acoustic impedance influences the performance of an ultrasonic emitter transducer when digital modulations are used and operating at frequencies between 100 kHz and 1 MHz. The study includes a Finite Element Method (FEM) and a MATLAB/Simulink simulation with an experimental validation to evaluate two types of piezoelectric materials: one based on ceramics (high acoustic impedance) with a resonance design and the other based in polymer (low acoustic impedance) designed to optimize the performance when digital modulations are used. The transducers performance for Binary Amplitude Shift Keying (BASK), On-Off Keying (OOK), Binary Phase Shift Keying (BPSK) and Binary Frequency Shift Keying (BFSK) modulations with a 1 MHz carrier at 125 kbps baud rate are compared.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011
Resumo:
BACKGROUND: Little information is available on the validity of simple and indirect body-composition methods in non-Western populations. Equations for predicting body composition are population-specific, and body composition differs between blacks and whites. OBJECTIVE: We tested the hypothesis that the validity of equations for predicting total body water (TBW) from bioelectrical impedance analysis measurements is likely to depend on the racial background of the group from which the equations were derived. DESIGN: The hypothesis was tested by comparing, in 36 African women, TBW values measured by deuterium dilution with those predicted by 23 equations developed in white, African American, or African subjects. These cross-validations in our African sample were also compared, whenever possible, with results from other studies in black subjects. RESULTS: Errors in predicting TBW showed acceptable values (1.3-1.9 kg) in all cases, whereas a large range of bias (0.2-6.1 kg) was observed independently of the ethnic origin of the sample from which the equations were derived. Three equations (2 from whites and 1 from blacks) showed nonsignificant bias and could be used in Africans. In all other cases, we observed either an overestimation or underestimation of TBW with variable bias values, regardless of racial background, yielding no clear trend for validity as a function of ethnic origin. CONCLUSIONS: The findings of this cross-validation study emphasize the need for further fundamental research to explore the causes of the poor validity of TBW prediction equations across populations rather than the need to develop new prediction equations for use in Africa.
Resumo:
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.
Resumo:
OBJECTIVES: Perioperative fluid accumulation determination is a challenge for the clinician. Bioelectrical impedance analysis (BIA) is a noninvasive method based on the electrical properties of tissues, which can assess body fluid compartments. The study aimed at assessing their changes in three types of surgery (thoracic, abdominal, and intracranial) requiring various regimens of fluid administration. DESIGN: Prospective descriptive trial. PATIENTS: A total of 26 patients scheduled for elective surgery were separated into three groups according to site of surgery: thoracic (n = 8), abdominal aortic (n = 8), and brain surgery (n = 10). SETTING: University teaching hospital. INTERVENTION: None. MEASUREMENTS: Whole body, segmental (arm, trunk, and legs) BIA at multiple frequency (0.5, 50, 100 kHz) was used to assess perioperative fluid accumulation after surgery. The fluid balances were calculated from the charts. RESULTS: The patients were aged 62+/-4 yrs. Fluid balances were 4.8+/-1.0 L, 4.1+/-0.5 L, and 1.9+/-0.3 L, respectively, in the three groups. In trunk surgery patients, fluid accumulation was detected as a drop in impedance in the operated area at all frequencies. In the operated area, there was an expansion of both intra- and extracellular compartments. A reduction in high frequencies' impedance in the legs was only detected after aortic surgery. Fluid accumulation and trunk impedance changes were strongly correlated. Neurosurgery only induced minor body fluid changes. CONCLUSIONS: Segmental BIA is able to detect and localize perioperative fluid accumulation. It may become a bedside tool to quantify and to localize fluid accumulation.
Resumo:
BACKGROUND AND AIMS: little is known regarding the reproducibility of body fat measuring devices; hence, we assessed the between and within-device reproducibility, and the within-day variability of body fat measurements. METHODS: body fat percentage was measured twice on seventeen female students aged between 18 and 20 with a body mass index of 21.9 ± 2.5 kg/m2 (mean ± SD) using seven bipolar bioelectrical impedance devices. Each participant was also measured each hour between 7:00 and 22:00. RESULTS: the correlation between first and second measurements was very high (Spearman r between 0.985 and 1.000, p<0.001), as well as between devices (Spearman r between 0.916 and 0.991, p<0.001). Repeated measurements analysis showed no differences were between devices (p=0.59) or readings (first vs. second: p=0.74). Conversely, significant differences were found between assessment periods throughout the day, measurements made in the morning being lower than those made in the afternoon (F test for repeated values= 6.58, p<0.001). CONCLUSIONS: the between and within-device reproducibility for measuring body fat is high, enabling the use of multiple devices in a single study. Conversely, small but significant changes in body fat measurements occur during the day, urging body fat measurements to be performed at fixed times.
Resumo:
The present study assessed the relative contribution of each body segment to whole body fat-free mass (FFM) and impedance and explored the use of segmental bioelectrical impedance analysis to estimate segmental tissue composition. Multiple frequencies of whole body and segmental impedances were measured in 51 normal and overweight women. Segmental tissue composition was independently assessed by dual-energy X-ray absorptiometry. The sum of the segmental impedance values corresponded to the whole body value (100.5 +/- 1.9% at 50 kHz). The arms and legs contributed to 47.6 and 43.0%, respectively, of whole body impedance at 50 kHz, whereas they represented only 10.6 and 34.8% of total FFM, as determined by dual-energy X-ray absorptiometry. The trunk averaged 10.0% of total impedance but represented 48.2% of FFM. For each segment, there was an excellent correlation between the specific impedance index (length2/impedance) and FFM (r = 0.55, 0.62, and 0.64 for arm, trunk, and leg, respectively). The specific resistivity was in a similar range for the limbs (159 +/- 23 cm for the arm and 193 +/- 39 cm for the leg at 50 kHz) but was higher for the trunk (457 +/- 71 cm). This study shows the potential interest of segmental body composition by bioelectrical impedance analysis and provides specific segmental body composition equations for use in normal and overweight women.
Resumo:
BACKGROUND/OBJECTIVES: (1) To cross-validate tetra- (4-BIA) and octopolar (8-BIA) bioelectrical impedance analysis vs dual-energy X-ray absorptiometry (DXA) for the assessment of total and appendicular body composition and (2) to evaluate the accuracy of external 4-BIA algorithms for the prediction of total body composition, in a representative sample of Swiss children. SUBJECTS/METHODS: A representative sample of 333 Swiss children aged 6-13 years from the Kinder-Sportstudie (KISS) (ISRCTN15360785). Whole-body fat-free mass (FFM) and appendicular lean tissue mass were measured with DXA. Body resistance (R) was measured at 50 kHz with 4-BIA and segmental body resistance at 5, 50, 250 and 500 kHz with 8-BIA. The resistance index (RI) was calculated as height(2)/R. Selection of predictors (gender, age, weight, RI4 and RI8) for BIA algorithms was performed using bootstrapped stepwise linear regression on 1000 samples. We calculated 95% confidence intervals (CI) of regression coefficients and measures of model fit using bootstrap analysis. Limits of agreement were used as measures of interchangeability of BIA with DXA. RESULTS: 8-BIA was more accurate than 4-BIA for the assessment of FFM (root mean square error (RMSE)=0.90 (95% CI 0.82-0.98) vs 1.12 kg (1.01-1.24); limits of agreement 1.80 to -1.80 kg vs 2.24 to -2.24 kg). 8-BIA also gave accurate estimates of appendicular body composition, with RMSE < or = 0.10 kg for arms and < or = 0.24 kg for legs. All external 4-BIA algorithms performed poorly with substantial negative proportional bias (r> or = 0.48, P<0.001). CONCLUSIONS: In a representative sample of young Swiss children (1) 8-BIA was superior to 4-BIA for the prediction of FFM, (2) external 4-BIA algorithms gave biased predictions of FFM and (3) 8-BIA was an accurate predictor of segmental body composition.
Resumo:
Objective: to assess the between and within-device reproducibility, as well as within-day variability of body fat measurements. Methods: body fat percentage (%BF) was measured twice on seventeen female students aged between 18 and 20 with a body mass index of 21.9 22.6 kg/m2 (mean SD) using seven bipolar bioelectrical impedance devices (BF-306) according to the manufacturer's recommendations. Each student was also measured each hour between 7:00 and 22:00. Statistical analysis was conducted using a general linear model for repeated measurements. Results: the correlation between first and second measurements was very high (Pearson r between 0.985 and 1.000, p<0.001), as well as the correlation between devices (Pearson r between 0.986 and 0.999, all p<0.001). Repeated measurements analysis showed no differences were between devices (F test=0.83, p=0.59) or readings (first vs. second: F test=0.12, p=0.74). Conversely, significant differences were found between assessment periods throughout the day, measurements made in the morning being lower than those made in the afternoon. Assuming an overall daily average of 100 (based on all measurements), the values were 95.8 3.2 (mean SD) at 8:00 versus 101.3 3.0 at 20:00, corresponding to a mean change of 2.2 1.1 in %BF (F test for repeated values=6.58, p<0.001). Conclusions: the between and within-device reproducibility for measuring body fat is high, enabling the use of multiple devices in a single study. Conversely, small but significant changes in body fat measurements occur during the day, urging body fat measurements to be performed at fixed times.