899 resultados para electricity
Resumo:
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Resumo:
This thesis presents a novel approach to building large-scale agent-based models of networked physical systems using a compositional approach to provide extensibility and flexibility in building the models and simulations. A software framework (MODAM - MODular Agent-based Model) was implemented for this purpose, and validated through simulations. These simulations allow assessment of the impact of technological change on the electricity distribution network looking at the trajectories of electricity consumption at key locations over many years.
Resumo:
The electricity industries of New Zealand (NZ) and the Australian state of Queensland have undergone substantial structural and regulatory reform with the common intent to improve economic efficiency. Deregulation and privatisation have been key elements of the reform but have been approached differently by each jurisdiction. This study traces the link between structural and regulatory regimes and asset valuation, profits and, ultimately, pricing. The study finds that key drivers in recent price increases are the government-owned generation and retail sector in NZ and the government-owned distribution sector in Queensland. It is concluded that, contrary to the rationale for the imposition of regulatory controls in a nonmarket environment, the regulatory regimes appear to have contributed to higher rather than lower pricing structures.
Resumo:
This thesis examines the law and policy concerning renewable energy electricity generation in Palestine, Jordan, and Abu Dhabi. The thesis gives greater attention to the promotion of solar power owing to the abundance and viability. It appears that energy security profoundly underpins the utilisation of renewable electricity, and the motivation of climate change mitigation also pays a role in the promotion of renewable energy in these jurisdictions. However, current policies and regulations are not fully able to promote the renewables in the power sector. The thesis submits that reforms of law and policy are necessary to enhance the achievement of environmental and energy goals.
Resumo:
The objective of this thesis is to find out how dominant firms in a liberalised electricity market will react when they face an increase in the level of costs due to emissions trading, and how this will effect the price of electricity. The Nordic electricity market is chosen as the setting in which to examine the question, since recent studies on the subject suggest that interaction between electricity markets and emissions trading is very much dependent on conditions specific to each market area. There is reason to believe that imperfect competition prevails in the Nordic market, thus the issue is approached through the theory of oligopolistic competition. The generation capacity available at the market, marginal cost of electricity production and seasonal levels of demand form the data based on which the dominant firms are modelled using the Cournot model of competition. The calculations are made for two levels of demand, high and low, and with several values of demand elasticity. The producers are first modelled under no carbon costs and then by adding the cost of carbon dioxide at 20€/t to those technologies subject to carbon regulation. In all cases the situation under perfect competition is determined as a comparison point for the results of the Cournot game. The results imply that the potential for market power does exist on the Nordic market, but the possibility for exercising market power depends on the demand level. In season of high demand the dominant firms may raise the price significantly above competitive levels, and the situation is aggravated when the cost of carbon dioixide is accounted for. Under low demand leves there is no difference between perfect and imperfect competition. The results are highly dependent on the price elasticity of demand.
Resumo:
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.
Resumo:
An extensive electricity transmission network facilitates electricity trading between Finland, Sweden, Norway and Denmark. Currently most of the area's power generation is traded at NordPool, where the trading volumes have steadily increased since the early 1990's, when the exchange was founded. The Nordic electricity is expected to follow the current trend and further integrate with the other European electricity markets. Hydro power is the source for roughly a half of the supply in the Nordic electricity market and most of the hydro is generated in Norway. The dominating role of hydro power distinguishes the Nordic electricity market from most of the other market places. Production of hydro power varies mainly due to hydro reservoirs and demand for electricity. Hydro reservoirs are affected by water inflows that differ each year. The hydro reservoirs explain remarkably the behaviour of the Nordic electricity markets. Therefore among others, Kauppi and Liski (2008) have developed a model that analyzes the behaviour of the markets using hydro reservoirs as explanatory factors. Their model includes, for example, welfare loss due to socially suboptimal hydro reservoir usage, socially optimal electricity price, hydro reservoir storage and thermal reservoir storage; that are referred as outcomes. However, the model does not explain the real market condition but rather an ideal situation. In the model the market is controlled by one agent, i.e. one agent controls all the power generation reserves; it is referred to as a socially optimal strategy. Article by Kauppi and Liski (2008) includes an assumption where an individual agent has a certain fraction of market power, e.g. 20 % or 30 %. In order to maintain the focus of this thesis, this part of their paper is omitted. The goal of this thesis is two-fold. Firstly we expand the results from the socially optimal strategy for years 2006-08, as the earlier study finishes in 2005. The second objective is to improve on the methods from the previous study. This thesis results several outcomes (SPOT-price and welfare loss, etc.) due to socially optimal actions. Welfare loss is interesting as it describes the inefficiency of the market. SPOT-price is an important output for the market participants as it often has an effect on end users' electricity bills. Another function is to modify and try to improve the model by means of using more accurate input data, e.g. by considering pollution trade rights effect on input data. After modifications to the model, new welfare losses are calculated and compared with the same results before the modifications. The hydro reservoir has the higher explanatory significance in the model followed by thermal power. In Nordic markets, thermal power reserves are mostly nuclear power and other thermal sources (coal, natural gas, oil, peat). It can be argued that hydro and thermal reservoirs determine electricity supply. Roughly speaking, the model takes into account electricity demand and supply, and several parameters related to them (water inflow, oil price, etc.), yielding finally the socially optimal outcomes. The author of this thesis is not aware of any similar model being tested before. There have been some other studies that are close to the Kauppi and Liski (2008) model, but those have a somewhat different focus. For example, a specific feature in the model is the focus on long-run capacity usage that differs from the previous studies on short-run market power. The closest study to the model is from California's wholesale electricity markets that, however, uses different methodology. Work is constructed as follows.
Resumo:
Models for electricity planning require inclusion of demand. Depending on the type of planning, the demand is usually represented as an annual demand for electricity (GWh), a peak demand (MW) or in the form of annual load-duration curves. The demand for electricity varies with the seasons, economic activities, etc. Existing schemes do not capture the dynamics of demand variations that are important for planning. For this purpose, we introduce the concept of representative load curves (RLCs). Advantages of RLCs are demonstrated in a case study for the state of Karnataka in India. Multiple discriminant analysis is used to cluster the 365 daily load curves for 1993-94 into nine RLCs. Further analyses of these RLCs help to identify important factors, namely, seasonal, industrial, agricultural, and residential (water heating and air-cooling) demand variations besides rationing by the utility. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The paper explores the biomass based power generation potential of Africa. Access to electricity in sub-Saharan Africa (SSA) is about 26% and falls to less than 1% in the rural areas. On the basis of the agricultural and forest produce of this region, the residues generated after processing are estimated for all the countries. The paper also addresses the use of gasification technology - an efficient thermo-chemical process for distributed power generation - either to replace fossil fuel in an existing diesel engine based power generation system or to generate electricity using a gas engine. This approach enables the implementation of electrification programs in the rural sector and gives access to grid quality power. This study estimates power generation potential at about 5000 MW and 10,000 MW by using 30% of residues generated during agro processing and 10% of forest residues from the wood processing industry, respectively. A power generation potential of 15000 MW could generate 100 terawatt-hours (TWh), about 15% of current generation in SSA. The paper also summarizes some of the experience in using the biomass gasification technology for power generation in Africa and India. The paper also highlights the techno economics and key barriers to promotion of biomass energy in sub-Saharan Africa. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.
Resumo:
Electricity appears to be the energy carrier of choice for modern economics since growth in electricity has outpaced growth in the demand for fuels. A decision maker (DM) for accurate and efficient decisions in electricity distribution requires the sector wise and location wise electricity consumption information to predict the requirement of electricity. In this regard, an interactive computer-based Decision Support System (DSS) has been developed to compile, analyse and present the data at disaggregated levels for regional energy planning. This helps in providing the precise information needed to make timely decisions related to transmission and distribution planning leading to increased efficiency and productivity. This paper discusses the design and implementation of a DSS, which facilitates to analyse the consumption of electricity at various hierarchical levels (division, taluk, sub division, feeder) for selected periods. This DSS is validated with the data of transmission and distribution systems of Kolar district in Karnataka State, India.
Resumo:
Tunability of electron recombination time and light to electricity conversion efficiency to superior values in semiconductor sensitized solar cells via optimized design of nanocrystal light sensitizer shape is discussed here.
Resumo:
India needs to significantly increase its electricity consumption levels, in a sustainable manner, if it has to ensure rapid economic development, a goal that remains the most potent tool for delivering adaptation capacity to its poor who will suffer the worst consequences of climate change. Resource/supply constraints faced by conventional energy sources, techno-economic constraints faced by renewable energy sources, and the bounds imposed by climate change on fossil fuel use are likely to undermine India's quest for having a robust electricity system that can effectively contribute to achieving accelerated, sustainable and inclusive economic growth. One possible way out could be transitioning into a sustainable electricity system, which is a trade-off solution having taken into account the economic, social and environmental concerns. As a first step toward understanding this transition, we contribute an indicator based hierarchical multidimensional framework as an analytical tool for sustainability assessment of electricity systems, and validate it for India's national electricity system. We evaluate Indian electricity system using this framework by comparing it with a hypothetical benchmark sustainable electrical system, which was created using best indicator values realized across national electricity systems in the world. This framework, we believe, can be used to examine the social, economic and environmental implications of the current Indian electricity system as well as setting targets for future development. The analysis with the indicator framework provides a deeper understanding of the system, identify and quantify the prevailing sustainability gaps and generate specific targets for interventions. We use this framework to compute national electricity system sustainability index (NESSI) for India. (C) 2014 Elsevier Ltd. All rights reserved.