81 resultados para ecotoxicity
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aquatic macrophytes are important components of aquatic ecosystems, but these plants have become a problem due to their occurrence in different regions. Some studies aimed to demonstrate the effectiveness of herbicides to control these macrophytes; however, few studies report the possible ecotoxicological effects. The objective of this study was to estimate the acute toxicity (LC (I)50;96h) and assess water quality variables for glyphosate in the Rodeo® formulation, Aterbane® BR surfactant and mixtures of glyphosate + 0.5% and 1.0% of surfactant, for the guaru fish (Phallocerus caudimaculatus). The guaru was exposed to increasing concentrations of glyphosate and a mixture of glyphosate + 0.5 and 1.0% of surfactant. The mixture of glyphosate and glyphosate + 0.5 and 1.0% of surfactant showed (LC (I)50;96h) > 975.0 mg L -1. For the surfactant, the rate was 5.81 mg L -1. The glyphosate and mixtures of glyphosate + 0.5% and 1.0% of surfactant caused a decrease in pH and dissolved oxygen and increased the electrical conductivity of water. Glyphosate in the Rodeo® formulation and the mixtures with surfactant Aterbane® BR can be classified as practically nontoxic, whereas surfactant Aterbane® BR can be considered as moderately toxic to guaru.
Resumo:
The objective of this paper was to review data on residues of medical products in aquatic environments and at wastewater treatment plants. Secondarily the paper presents a discussion about the need for a good management of drugs residues and effluents generated by this sector. Bringing the evidences of environmental possible damages reported by ecotoxicity data on the effects of fluoxetine to Vibrio fischeri and H. azteca, aquatic organisms daily exposed to environmental contaminants. From the results we observed that 0.3 mg.l-1 of fluoxetine hidrochloride induced lethality to H. azteca and 30 mg.l-1 reduced the luminescence of Vibrio fischeri. This assay evidenced higher toxicity when we used the generic product.
Resumo:
Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. © 2012 Elsevier B.V..
Resumo:
This study aimed to estimate the acute toxicity of teflubenzuron (1-(3,5-dichloro-2,4-difluorophenyl)-3-(2,6-difluorobenzoyl)urea) (TFB) for Daphnia magna, Lemna minor and Poecilia reticulata, in the absence and presence of sediment; evaluate the effect of sediment on the TFB bioavailability; and to classify this insecticide according to its environmental poisoning risk for agricultural and aquaculture uses. The tests of TFB acute toxicity were conducted in static system in a completely randomized design with increasing TFB concentrations, and a control group. The TFB has been classified according to the estimated values of EC50 and LC50 by its acute toxicity and environmental risk. The sediment significantly reduced toxicity and bioavailability of TFB in water column. Therefore, the insecticide can be classified as being highly toxic to Daphnia magna, which means the agricultural and aquacultural uses of TFB pose a high risk of environmental toxicity to non-target organisms. However, it was practically non-toxic to L. minor and P. reticulata. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)