959 resultados para ecological water storage


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Brazilian Law stipulates that water is a limited natural resource doted of economic value, thus it is necessary to develop mechanisms for its adequate management. Actions that encourage the farmers to apply soil conservation practices with the purpose of increase water yield from springs and to promote improvement of its quality, reducing production of sediment transportation, is being encouraged by governments, even with financial compensation for owners. From these assertions, this study aims to quantify the benefits of the conservation actions of the management units and to characterize a Water Yield Indicator (WYI) to support sustainable actions in the watershed of Alto Rio Grande region, in the state of Minas Gerais (MG). To assess the impact of actions it were identified four scenarios of land use and occupation of the watershed from Marcela stream which is located in Alto Rio Grande Region. After analyzing the results, it can be stated that the scenarios simulation has demonstrated important changes in water yield and that the definition of the Water Yield Index from the junction of the erosion potential with the water storage potential, has proved effective, as it integrate quantity and quality of water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Remote sensing data and digital elevation models were utilized to extract the catchment hydrological parameters and to delineate storage areas for the Ugandan Equatorial Lakes region. Available rainfall/discharge data are integrated with these morphometric data to construct a hydrological model that simulates the water balance of the different interconnected basins and enables the impact of potential management options to be examined. The total annual discharges of the basins are generally very low (less than 7% of the total annual rainfall). The basin of the shallow (5 m deep) Lake Kioga makes only a minor hydrological contribution compared with other Equatorial Lakes, because most of the overflow from Lake Victoria basin into Lake Kioga is lost by evaporation and evapotranspiration. The discharge from Lake Kioga could be significantly increased by draining the swamps through dredging and deepening certain channel reaches. Development of hydropower dams on the Equatorial Lakes will have an adverse impact on the annual water discharge downstream, including the occasional reduction of flow required for filling up to designed storage capacities and permanently increasing the surface areas of water that is exposed to evaporation. On the basis of modelling studies, alternative sites are proposed for hydropower development and water storage schemes

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a first step in assessing the potential of thermal energy storage in Swedish buildings, the current situation of the Swedish building stock and different storage methods are discussed in this paper. Overall, many buildings are from the 1960’s or earlier having a relatively high energy demand, creating opportunities for large energy savings. The major means of heating are electricity for detached houses and district heating for multi dwelling houses and premises. Cooling needs are relatively low but steadily increasing, emphasizing the need to consider energy storage for both heat and cold. The thermal mass of a building is important for passive storage of thermal energy but this has not been considered much when constructing buildings in Sweden. Instead, common ways of storing thermal energy in Swedish buildings today is in water storage tanks or in the ground using boreholes, while latent thermal energy storage is still very uncommon.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microbiological monitoring of the water used for hemodialysis is extremely important, especially because of the debilitated immune system of patients suffering from chronic renal insufficiency. To investigate the occurrence and species diversity of bacteria in waters, water samples were collected monthly from a hemodialysis center in upstate São Paulo and tap water samples at the terminal sites of the distribution system was sampled repeatedly (22 times) at each of five points in the distribution system; a further 36 samples were taken from cannulae in 19 hemodialysis machines that were ready for the next patient, four samples from the reuse system and 13 from the water storage system. To identify bacteria, samples were filtered through 0.22 mu m-pore membranes; for mycobacteria, 0.45 mu m pores were used. Conventional microbiological and molecular methods were used in the analysis. Bacteria were isolated from the distribution system (128 isolates), kidney machine water (43) and reuse system (3). Among these isolates, 32 were Gram-positive rods, 120 Gram-negative rods, 20 Gram-positive cocci and 11 mycobacteria. We propose the continual monitoring of the water supplies in hemodialysis centers and the adoption of effective prophylactic measures that minimize the exposure of these immunodeficient patients to contaminated sources of water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluated the shear bond strength (SBS) and stability of commercially pure titanium (CP Ti)/repair material interfaces promoted by different repair systems. One hundred CP Ti cast discs were divided into five repair system groups: 1) Epricord (EP); 2) Bistite 11 DC (BT); 3) Cojet (CJ); 4) Scotchbond Multi-Purpose Plus (SB) (control group); and 5) Cojet Sand plus Scotchbond Multi-Purpose Plus (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (5000 cycles, 5 degrees-55 degrees C) and stored under the same conditions for either 24 hours or six months (n=10). SBS was tested and the data were analyzed by two-way analysis of variance (ANOVA) and Tukey test (alpha=.05). Failure mode was determined with a stereomicroscope (20x). The repair system, storage time, and their interaction significantly affected the SBS (p<0.001). At 24 hours, CJSB exhibited the highest SBS value, followed by CJ. At six months, these two groups had similar mean SBS (p>0.05) and higher means in comparison to the other groups. For both storage times, BT presented the lowest SBS, while the EP and SB groups did not differ significantly from one another (p>0.05). There were no significant differences in SBS between the storage times for the groups EP and CJ (p>0.05). The groups BT, SB, and CJSB showed 100% adhesive failure, irrespective of storage time. The CJSB group showed the highest SBS at both storage times. At six months, the CJ group exhibited a similar SBS mean value when compared to the CJSB group. Water storage adversely affected the groups BT, SB (control group), and CJSB. Considering SBS values, stability, and the failure mode simultaneously, the CJ group showed the best CP Ti repair performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of ageing in distilled water on the hardness and compressive strength of a direct composite resin Z100, a feldspatic porcelain (Noritake) and three indirect composites (Artglass, Solidex and Targis). For the Vickers hardness tests, five disk-shaped specimens (2 x 4 mm) of each material were prepared according to the manufacturers' instructions. The hardness tests were conducted using a Vickers diamond indentor. Compressive strength measurements were recorded on cylindrical specimens with a diameter of 6 mm and a length of 12 mm. The compression tests were carried out with a constant cross-head speed of 0.5 mm min(-1) on a mechanical test machine. For each material, 10 specimens were tested after 7 days of dry storage at 37 +/- 1 degreesC and 10 specimens were tested after water storage at 37 +/- 1 degreesC for 180 days. Noritake porcelain specimens showed higher hardness values than the composites. Among the composite materials, Z100 promoted the highest VHN values, regardless of the ageing periods. The results showed that Solidex and Z100 had the highest compressive strength values. Ageing in water reduced the hardness for all composites, but had no long-term effect on the compressive strength.