844 resultados para early life environment
Resumo:
Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.
Resumo:
This study examines the timing of menarche in relation to infant-feeding methods, specifically addressing the potential effects of soy isoflavone exposure through soy-based infant feeding. Subjects were participants in the Avon Longitudinal Study of Parents and Children (ALSPAC). Mothers were enrolled during pregnancy and their children have been followed prospectively. Early-life feeding regimes, categorised as primarily breast, early formula, early soy and late soy, were defined using infant-feeding questionnaires administered during infancy. For this analysis, age at menarche was assessed using questionnaires administered approximately annually between ages 8 and 14.5. Eligible subjects were limited to term, singleton, White females. We used Kaplan-Meier survival curves and Cox proportional hazards models to assess age at menarche and risk of menarche over the study period. The present analysis included 2920 girls. Approximately 2% of mothers reported that soy products were introduced into the infant diet at or before 4 months of age (early soy). The median age at menarche [interquartile range (IQR)] in the study sample was 153 months [144-163], approximately 12.8 years. The median age at menarche among early soy-fed girls was 149 months (12.4 years) [IQR, 140-159]. Compared with girls fed non-soy-based infant formula or milk (early formula), early soy-fed girls were at 25% higher risk of menarche throughout the course of follow-up (hazard ratio 1.25 [95% confidence interval 0.92, 1.71]). Our results also suggest that girls fed soy products in early infancy may have an increased risk of menarche specifically in early adolescence. These findings may be the observable manifestation of mild endocrine-disrupting effects of soy isoflavone exposure. However, our study is limited by few soy-exposed subjects and is not designed to assess biological mechanisms. Because soy formula use is common in some populations, this subtle association with menarche warrants more in-depth evaluation in future studies.
Resumo:
Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.
Resumo:
The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.
Resumo:
Aims To determine whether children with infections in early life (recorded routinely in general practice) have a reduced risk of Type 1 diabetes, as would be expected from the hygiene hypothesis.