943 resultados para early detection of cancer
Resumo:
Clinical observations made by practitioners and reported using web- and mobile-based technologies may benefit disease surveillance by improving the timeliness of outbreak detection. Equinella is a voluntary electronic reporting and information system established for the early detection of infectious equine diseases in Switzerland. Sentinel veterinary practitioners have been able to report cases of non-notifiable diseases and clinical symptoms to an internet-based platform since November 2013. Telephone interviews were carried out during the first year to understand the motivating and constraining factors affecting voluntary reporting and the use of mobile devices in a sentinel network. We found that non-monetary incentives attract sentinel practitioners; however, insufficient understanding of the reporting system and of its relevance, as well as concerns over the electronic dissemination of health data were identified as potential challenges to sustainable reporting. Many practitioners are not yet aware of the advantages of mobile-based surveillance and may require some time to become accustomed to novel reporting methods. Finally, our study highlights the need for continued information feedback loops within voluntary sentinel networks.
Resumo:
The Quality of Life of a person may depend on early attention to his neurodevel-opment disorders in childhood. Identification of language disorders under the age of six years old can speed up required diagnosis and/or treatment processes. This paper details the enhancement of a Clinical Decision Support System (CDSS) aimed to assist pediatricians and language therapists at early identification and re-ferral of language disorders. The system helps to fine tune the Knowledge Base of Language Delays (KBLD) that was already developed and validated in clinical routine with 146 children. Medical experts supported the construction of Gades CDSS by getting scientific consensus from literature and fifteen years of regis-tered use cases of children with language disorders. The current research focuses on an innovative cooperative model that allows the evolution of the KBLD of Gades through the supervised evaluation of the CDSS learnings with experts¿ feedback. The deployment of the resulting system is being assessed under a mul-tidisciplinary team of seven experts from the fields of speech therapist, neonatol-ogy, pediatrics, and neurology.
Resumo:
In the chemical textile domain experts have to analyse chemical components and substances that might be harmful for their usage in clothing and textiles. Part of this analysis is performed searching opinions and reports people have expressed concerning these products in the Social Web. However, this type of information on the Internet is not as frequent for this domain as for others, so its detection and classification is difficult and time-consuming. Consequently, problems associated to the use of chemical substances in textiles may not be detected early enough, and could lead to health problems, such as allergies or burns. In this paper, we propose a framework able to detect, retrieve, and classify subjective sentences related to the chemical textile domain, that could be integrated into a wider health surveillance system. We also describe the creation of several datasets with opinions from this domain, the experiments performed using machine learning techniques and different lexical resources such as WordNet, and the evaluation focusing on the sentiment classification, and complaint detection (i.e., negativity). Despite the challenges involved in this domain, our approach obtains promising results with an F-score of 65% for polarity classification and 82% for complaint detection.
Resumo:
The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Visual field assessment is a core component of glaucoma diagnosis and monitoring, and the Standard Automated Perimetry (SAP) test is considered up until this moment, the gold standard of visual field assessment. Although SAP is a subjective assessment and has many pitfalls, it is being constantly used in the diagnosis of visual field loss in glaucoma. Multifocal visual evoked potential (mfVEP) is a newly introduced method used for visual field assessment objectively. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard SAP visual field assessment, and others were not very informative and needed more adjustment and research work. In this study, we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. OBJECTIVES: The purpose of this study is to examine the effectiveness of a new analysis method in the Multi-Focal Visual Evoked Potential (mfVEP) when it is used for the objective assessment of the visual field in glaucoma patients, compared to the gold standard technique. METHODS: 3 groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey visual field HFA test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the Hemifield Sector Analysis HSA protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the 3 groups in the mean signal to noise ratio SNR (ANOVA p<0.001 with a 95% CI). The difference between superior and inferior hemispheres in all subjects were all statistically significant in the glaucoma patient group 11/11 sectors (t-test p<0.001), partially significant 5/11 (t-test p<0.01) and no statistical difference between most sectors in normal group (only 1/11 was significant) (t-test p<0.9). sensitivity and specificity of the HAS protocol in detecting glaucoma was 97% and 86% respectively, while for glaucoma suspect were 89% and 79%. DISCUSSION: The results showed that the new analysis protocol was able to confirm already existing field defects detected by standard HFA, was able to differentiate between the 3 study groups with a clear distinction between normal and patients with suspected glaucoma; however the distinction between normal and glaucoma patients was especially clear and significant. CONCLUSION: The new HSA protocol used in the mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patient. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss.
Resumo:
Objective: The purpose of this study was to examine the effectiveness of a new analysis method of mfVEP objective perimetry in the early detection of glaucomatous visual field defects compared to the gold standard technique. Methods and patients: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes), and glaucoma suspect patients (38 eyes). All subjects underwent two standard 24-2 visual field tests: one with the Humphrey Field Analyzer and a single mfVEP test in one session. Analysis of the mfVEP results was carried out using the new analysis protocol: the hemifield sector analysis protocol. Results: Analysis of the mfVEP showed that the signal to noise ratio (SNR) difference between superior and inferior hemifields was statistically significant between the three groups (analysis of variance, P<0.001 with a 95% confidence interval, 2.82, 2.89 for normal group; 2.25, 2.29 for glaucoma suspect group; 1.67, 1.73 for glaucoma group). The difference between superior and inferior hemifield sectors and hemi-rings was statistically significant in 11/11 pair of sectors and hemi-rings in the glaucoma patients group (t-test P<0.001), statistically significant in 5/11 pairs of sectors and hemi-rings in the glaucoma suspect group (t-test P<0.01), and only 1/11 pair was statistically significant (t-test P<0.9). The sensitivity and specificity of the hemifield sector analysis protocol in detecting glaucoma was 97% and 86% respectively and 89% and 79% in glaucoma suspects. These results showed that the new analysis protocol was able to confirm existing visual field defects detected by standard perimetry, was able to differentiate between the three study groups with a clear distinction between normal patients and those with suspected glaucoma, and was able to detect early visual field changes not detected by standard perimetry. In addition, the distinction between normal and glaucoma patients was especially clear and significant using this analysis. Conclusion: The new hemifield sector analysis protocol used in mfVEP testing can be used to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol, it can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. The sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucomatous visual field loss. The intersector analysis protocol can detect early field changes not detected by the standard Humphrey Field Analyzer test. © 2013 Mousa et al, publisher and licensee Dove Medical Press Ltd.
Resumo:
CONCLUSIONS: The new HSA protocol used in the mfVEP testing can be applied to detect glaucomatous visual field defects in both glaucoma and glaucoma suspect patients. Using this protocol can provide information about focal visual field differences across the horizontal midline, which can be utilized to differentiate between glaucoma and normal subjects. Sensitivity and specificity of the mfVEP test showed very promising results and correlated with other anatomical changes in glaucoma field loss. PURPOSE: Multifocal visual evoked potential (mfVEP) is a newly introduced method used for objective visual field assessment. Several analysis protocols have been tested to identify early visual field losses in glaucoma patients using the mfVEP technique, some were successful in detection of field defects, which were comparable to the standard automated perimetry (SAP) visual field assessment, and others were not very informative and needed more adjustment and research work. In this study we implemented a novel analysis approach and evaluated its validity and whether it could be used effectively for early detection of visual field defects in glaucoma. METHODS: Three groups were tested in this study; normal controls (38 eyes), glaucoma patients (36 eyes) and glaucoma suspect patients (38 eyes). All subjects had a two standard Humphrey field analyzer (HFA) test 24-2 and a single mfVEP test undertaken in one session. Analysis of the mfVEP results was done using the new analysis protocol; the hemifield sector analysis (HSA) protocol. Analysis of the HFA was done using the standard grading system. RESULTS: Analysis of mfVEP results showed that there was a statistically significant difference between the three groups in the mean signal to noise ratio (ANOVA test, p < 0.001 with a 95% confidence interval). The difference between superior and inferior hemispheres in all subjects were statistically significant in the glaucoma patient group in all 11 sectors (t-test, p < 0.001), partially significant in 5 / 11 (t-test, p < 0.01), and no statistical difference in most sectors of the normal group (1 / 11 sectors was significant, t-test, p < 0.9). Sensitivity and specificity of the HSA protocol in detecting glaucoma was 97% and 86%, respectively, and for glaucoma suspect patients the values were 89% and 79%, respectively.
Resumo:
2000 Mathematics Subject Classification: Primary 60G70, 62F03.
Resumo:
Background Delirium is highly prevalent, especially in older patients. It independently leads to adverse outcomes, but remains under-detected, particularly hypoactive forms. Although early identification and intervention is important, delirium prevention is key to improving outcomes. The delirium prodrome concept has been mooted for decades, but remains poorly characterised. Greater understanding of this prodrome would promote prompt identification of delirium-prone patients, and facilitate improved strategies for delirium prevention and management. Methods Medical inpatients of ≥70 years were screened for prevalent delirium using the Revised Delirium Rating Scale (DRS--‐R98). Those without prevalent delirium were assessed daily for delirium development, prodromal features and motor subtype. Survival analysis models identified which prodromal features predicted the emergence of incident delirium in the cohort in the first week of admission. The Delirium Motor Subtype Scale-4 was used to ascertain motor subtype. Results Of 555 patients approached, 191 patients were included in the prospective study. The median age was 80 (IQR 10) and 101 (52.9%) were male. Sixty-one patients developed incident delirium within a week of admission. Several prodromal features predicted delirium emergence in the cohort. Firstly, using a novel Prodromal Checklist based on the existing literature, and controlling for confounders, seven predictive behavioural features were identified in the prodromal period (for example, increasing confusion; and being easily distractible). Additionally, using serial cognitive tests and the DRS-R98 daily, multiple cognitive and other core delirium features were detected in the prodrome (for example inattention; and sleep-wake cycle disturbance). Examining longitudinal motor subtypes in delirium cases, subtypes were found to be predominantly stable over time, the most prevalent being hypoactive subtype (62.3%). Discussion This thesis explored multiple aspects of delirium in older medical inpatients, with particular focus on the characterisation of the delirium prodrome. These findings should help to inform future delirium educational programmes, and detection and prevention strategies.
Resumo:
Background/Aims: The Mini Addenbrooke’s Cognitive Examination (M-ACE) is the abbreviated version of the widely-used Addenbrooke’s Cognitive Examination (ACE-III), a cognitive screening tool that is used internationally in the assessment of mild cognitive impairment (MCI) and dementia. The objectives of this study were to investigate the diagnostic accuracy of the M-ACE with individuals aged 75 and over to distinguish between those who do and do not have a dementia or MCI, and also to establish whether the cut-off scores recommended by Hsieh et al. (2014) [9] in the original validation study for the M-ACE are optimal for this age group. Methods: The M-ACE was administered to 58 participants (24 with a diagnosis of dementia, 17 with a diagnosis of MCI and 17 healthy controls). The extent to which scores distinguished between groups (dementia, MCI or no diagnosis) was explored using receiver operating characteristic curve analysis. Results: The optimal cut-off for detecting dementia was ≤ 21/30 (score ≤ 21/30 indicating dementia with a sensitivity of 0.95, a specificity of 1 and a positive predictive value of 1) compared to the original higher published cut-off of ≤ 25/30 (sensitivity of 0.95, specificity of 0.70 and a positive predictive value of 0.82 in this sample). Conclusions: The M-ACE has excellent diagnostic accuracy for the detection of dementia in a UK clinical sample. It may be necessary to consider lower cut-offs than those given in the original validation study.
Resumo:
OBJECTIVES: To provide an overview of 1) traditional methods of skin cancer early detection, 2) current technologies for skin cancer detection, and 3) evolving practice models of early detection. DATA SOURCES: Peer-reviewed databased articles and reviews, scholarly texts, and Web-based resources. CONCLUSION: Early detection of skin cancer through established methods or newer technologies is critical for reducing both skin cancer mortality and the overall skin cancer burden. IMPLICATIONS FOR NURSING PRACTICE: A basic knowledge of recommended skin examination guidelines and risk factors for skin cancer, traditional methods to further examine lesions that are suspicious for skin cancer and evolving detection technologies can guide patient education and skin inspection decisions.