989 resultados para dynamically modified silica capillary electrochromatography
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
Imatinib (IMAT) is a tyrosine kinase inhibitor that has been used for the treatment of chronic myeloid leukemia (CML). Despite the efficacy of IMAT therapy, some cases of treatment resistance have been described in CML. Developing a plasma method is important since there are several studies that provided a higher correlation between IMAT plasma concentration and response to treatment. Therefore, in this investigation we validated a method by CE as an alternative, new, simple and fast electrophoretic method for IMAT determination in human plasma. The analysis was performed using a fused silica capillary (50 mm id x 46.5 cm total length, 38.0 cm effective length); 50 mmol/L sodium phosphate buffer, pH 2.5, as BGE; hydrodynamic injection time of 20 s (50 mbar); voltage of 30 kV; capillary temperature of 35 degrees C and detection at 200 nm. Plasma samples pre-treatment involved liquid-liquid extraction with methyl-tert-butyl ether as the extracting solvent. The method was linear from 0.125 to 5.00 mg/mL. The LOQ was 0.125 mg/mL. Mean absolute recovery of IMAT was 67%. The method showed to be precise and accurate with RSD and relative error values lower than 15%. Furthermore, the application of the method was performed in the analysis of plasma samples from CML patients undergoing treatment with IMAT.
Resumo:
The objective of this work was to synthesize nanosilicas with different degree of hydrophobicity by the sol-gel method, using tetraethyl orthosilicate as a precursor. For this purpose, 3-aminopropyl triethoxysilane (APS) and 1,1,1,3,3,3 - hexamethyldisilazane (HMDS), were added during synthesis as modifiers. A commercial biopolymer (Hexamoll Dinch, BASF) intended for packaging of apples, was added to the new nanosilicas. The materials obtained were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, potentiometric titration, porosity, specific surface area and hydrophobicity/hydrophilicity by wetting test. Colorimetry was used to evaluate change in apple pulp color after contact with the different silicas.
Resumo:
The filling of capillaries via the sol-gel process is growing. Therefore, this technical note focuses on disseminating knowledge acquired in the Group of Analytical Chemistry and Chemometrics over seven years working with monolithic stationary phase preparation in fused silica capillaries. We believe that the detailed information presented in this technical note concerning the construction of an alternative high pressurization device, used to fill capillary columns via the sol-gel process, which has promising potential for applications involving capillary electrochromatography and liquid chromatography in nano scale, may be enlightening and motivating for groups interested in developing research activities within this theme.
Resumo:
Knowledge of the behaviour of cellulose, hemicelluloses, and lignin during wood and pulp processing is essential for understanding and controlling the processes. Determination of monosaccharide composition gives information about the structural polysaccharide composition of wood material and helps when determining the quality of fibrous products. In addition, monitoring of the acidic degradation products gives information of the extent of degradation of lignin and polysaccharides. This work describes two capillary electrophoretic methods developed for the analysis of monosaccharides and for the determination of aliphatic carboxylic acids from alkaline oxidation solutions of lignin and wood. Capillary electrophoresis (CE), in its many variants is an alternative separation technique to chromatographic methods. In capillary zone electrophoresis (CZE) the fused silica capillary is filled with an electrolyte solution. An applied voltage generates a field across the capillary. The movement of the ions under electric field is based on the charge and hydrodynamic radius of ions. Carbohydrates contain hydroxyl groups that are ionised only in strongly alkaline conditions. After ionisation, the structures are suitable for electrophoretic analysis and identification through either indirect UV detection or electrochemical detection. The current work presents a new capillary zone electrophoretic method, relying on in-capillary reaction and direct UV detection at the wavelength of 270 nm. The method has been used for the simultaneous separation of neutral carbohydrates, including mono- and disaccharides and sugar alcohols. The in-capillary reaction produces negatively charged and UV-absorbing compounds. The optimised method was applied to real samples. The methodology is fast since no other sample preparation, except dilution, is required. A new method for aliphatic carboxylic acids in highly alkaline process liquids was developed. The goal was to develop a method for the simultaneous analysis of the dicarboxylic acids, hydroxy acids and volatile acids that are oxidation and degradation products of lignin and wood polysaccharides. The CZE method was applied to three process cases. First, the fate of lignin under alkaline oxidation conditions was monitored by determining the level of carboxylic acids from process solutions. In the second application, the degradation of spruce wood using alkaline and catalysed alkaline oxidation were compared by determining carboxylic acids from the process solutions. In addition, the effectiveness of membrane filtration and preparative liquid chromatography in the enrichment of hydroxy acids from black liquor was evaluated, by analysing the effluents with capillary electrophoresis.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
La digestion enzymatique des protéines est une méthode de base pour les études protéomiques ainsi que pour le séquençage en mode « bottom-up ». Les enzymes sont ajoutées soit en solution (phase homogène), soit directement sur le gel polyacrylamide selon la méthode déjà utilisée pour l’isolation de la protéine. Les enzymes protéolytiques immobilisées, c’est-à-dire insolubles, offrent plusieurs avantages tels que la réutilisation de l’enzyme, un rapport élevé d’enzyme-sur-substrat, et une intégration facile avec les systèmes fluidiques. Dans cette étude, la chymotrypsine (CT) a été immobilisée par réticulation avec le glutaraldehyde (GA), ce qui crée des particules insolubles. L’efficacité d’immobilisation, déterminée par spectrophotométrie d’absorbance, était de 96% de la masse totale de la CT ajouté. Plusieurs différentes conditions d’immobilisation (i.e., réticulation) tels que la composition/pH du tampon et la masse de CT durant la réticulation ainsi que les différentes conditions d’entreposage tels que la température, durée et humidité pour les particules GA-CT ont été évaluées par comparaison des cartes peptidiques en électrophorèse capillaire (CE) des protéines standards digérées par les particules. Les particules de GA-CT ont été utilisés pour digérer la BSA comme exemple d’une protéine repliée large qui requit une dénaturation préalable à la digestion, et pour digérer la caséine marquée avec de l’isothiocyanate de fluorescéine (FITC) comme exemple d’un substrat dérivé afin de vérifier l’activité enzymatique du GA-CT dans la présence des groupements fluorescents liés au substrat. La cartographie peptidique des digestions par les particules GA-CT a été réalisée par CE avec la détection par absorbance ultraviolet (UV) ou fluorescence induite par laser. La caséine-FITC a été, en effet, digérée par GA-CT au même degré que par la CT libre (i.e., soluble). Un microréacteur enzymatique (IMER) a été fabriqué par immobilisation de la CT dans un capillaire de silice fondu du diamètre interne de 250 µm prétraité avec du 3-aminopropyltriéthoxysilane afin de fonctionnaliser la paroi interne avec les groupements amines. Le GA a été réagit avec les groupements amine puis la CT a été immobilisée par réticulation avec le GA. Les IMERs à base de GA-CT étaient préparé à l’aide d’un système CE automatisé puis utilisé pour digérer la BSA, la myoglobine, un peptide ayant 9 résidus et un dipeptide comme exemples des substrats ayant taille large, moyenne et petite, respectivement. La comparaison des cartes peptidiques des digestats obtenues par CE-UV ou CE-spectrométrie de masse nous permettent d’étudier les conditions d’immobilisation en fonction de la composition et le pH du tampon et le temps de réaction de la réticulation. Une étude par microscopie de fluorescence, un outil utilisé pour examiner l’étendue et les endroits d’immobilisation GA-CT dans l’IMER, ont montré que l’immobilisation a eu lieu majoritairement sur la paroi et que la réticulation ne s’est étendue pas si loin au centre du capillaire qu’anticipée.
Resumo:
The thesis covers a systematic investigation on the synthesis of silica aerogels and microspheres with tailored porosity, at ambient conditions by varying the experimental parameters as well as using organic templates. Organically modified silica-gelatin and silica-chitosan hybrids were developed for the first time using alkylalkoxysilanes such as MTMS and VTMS. Application of novel silica-biopolymer antiwetting coatings on different substrates such as glass, leather and textile is also demonstrated in the thesis.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of benzoate and sorbate ions in commercial beverages. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. As the high resolution obtained experimentally for sorbate and benzoate in the studies presented in the literature is not in agreement with that expected from the ionic mobility values published, a procedure to determine these values was carried out. The salicylate ion was used as the internal standard. The background electrolyte was composed of 25 mmol L(-1) tris(hydroxymethyl)aminomethane and 12.5 mmol L(-1) 2-hydroxyisobutyric acid, atpH 8.1.Separation was conducted in a fused-silica capillary(32 cm total length and 8.5 cm effective length, 50 mu m I.D.), with short-end injection configuration and direct UV detection at 200 nm for benzoate and salicylate and 254 nm for sorbate ions. The run time was only 28 s. A few figures of merit of the proposed method include: good linearity (R(2) > 0.999), limit of detection of 0.9 and 0.3 mg L(-1) for benzoate and sorbate, respectively, inter-day precision better than 2.7% (n =9) and recovery in the range 97.9-105%. Beverage samples were prepared by simple dilution with deionized water (1:11, v/v). Concentrations in the range of 197-401 mg L(-1) for benzoate and 28-144 mg L(-1) for sorbate were found in soft drinks and tea. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L(-1) tris(hydroxymethyl)aminomethane and 30 mmol L(-1) 2-hydroxyisobutyric acid,at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 mu m I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Mush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R(2) > 0.9999); limit of detection of 0.5 mg L(-1): inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1-104.5%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The performance of modular home made capillary electrophoresis equipment with spectrophotometric detection, at a visible region by means of a miniaturized linear charge coupled device, was evaluated for the determination of four food dyes. This system presents a simple but efficient home made cell detection scheme. A computer program that converts the spectral data after each run into the electropherograms was developed to evaluate the analytical parameters. The dyes selected for analytical evaluation of the system were Brilliant Blue FCF, Fast Green FCF, Sunset Yellow FCF, and Amaranth. Separation was carried out in a 29cm length and 75 mu m I.D fused silica capillary, using 10mmolL-1 borate buffer at pH 9, with separation voltage of 7.5kV. The detection limits for the dyes were between 0.3 and 1.5mgL-1 and the method presented adequate linearity over the ranges studied, with correlation coefficients greater than 0.99. The method was applied for determination and quantification of these dyes in fruit juices and candies.
Resumo:
This paper reports on the development and optimization of a modified Quick, Easy, Cheap Effective, Rugged and Safe (QuEChERS) based extraction technique coupled with a clean-up dispersive-solid phase extraction (dSPE) as a new, reliable and powerful strategy to enhance the extraction efficiency of free low molecular-weight polyphenols in selected species of dietary vegetables. The process involves two simple steps. First, the homogenized samples are extracted and partitioned using an organic solvent and salt solution. Then, the supernatant is further extracted and cleaned using a dSPE technique. Final clear extracts of vegetables were concentrated under vacuum to near dryness and taken up into initial mobile phase (0.1% formic acid and 20% methanol). The separation and quantification of free low molecular weight polyphenols from the vegetable extracts was achieved by ultrahigh pressure liquid chromatography (UHPLC) equipped with a phodiode array (PDA) detection system and a Trifunctional High Strength Silica capillary analytical column (HSS T3), specially designed for polar compounds. The performance of the method was assessed by studying the selectivity, linear dynamic range, the limit of detection (LOD) and limit of quantification (LOQ), precision, trueness, and matrix effects. The validation parameters of the method showed satisfactory figures of merit. Good linearity (View the MathML sourceRvalues2>0.954; (+)-catechin in carrot samples) was achieved at the studied concentration range. Reproducibility was better than 3%. Consistent recoveries of polyphenols ranging from 78.4 to 99.9% were observed when all target vegetable samples were spiked at two concentration levels, with relative standard deviations (RSDs, n = 5) lower than 2.9%. The LODs and the LOQs ranged from 0.005 μg mL−1 (trans-resveratrol, carrot) to 0.62 μg mL−1 (syringic acid, garlic) and from 0.016 μg mL−1 (trans-resveratrol, carrot) to 0.87 μg mL−1 ((+)-catechin, carrot) depending on the compound. The method was applied for studying the occurrence of free low molecular weight polyphenols in eight selected dietary vegetables (broccoli, tomato, carrot, garlic, onion, red pepper, green pepper and beetroot), providing a valuable and promising tool for food quality evaluation.