951 resultados para dynamic user behavior
Resumo:
Durante la actividad diaria, la sociedad actual interactúa constantemente por medio de dispositivos electrónicos y servicios de telecomunicaciones, tales como el teléfono, correo electrónico, transacciones bancarias o redes sociales de Internet. Sin saberlo, masivamente dejamos rastros de nuestra actividad en las bases de datos de empresas proveedoras de servicios. Estas nuevas fuentes de datos tienen las dimensiones necesarias para que se puedan observar patrones de comportamiento humano a grandes escalas. Como resultado, ha surgido una reciente explosión sin precedentes de estudios de sistemas sociales, dirigidos por el análisis de datos y procesos computacionales. En esta tesis desarrollamos métodos computacionales y matemáticos para analizar sistemas sociales por medio del estudio combinado de datos derivados de la actividad humana y la teoría de redes complejas. Nuestro objetivo es caracterizar y entender los sistemas emergentes de interacciones sociales en los nuevos espacios tecnológicos, tales como la red social Twitter y la telefonía móvil. Analizamos los sistemas por medio de la construcción de redes complejas y series temporales, estudiando su estructura, funcionamiento y evolución en el tiempo. También, investigamos la naturaleza de los patrones observados por medio de los mecanismos que rigen las interacciones entre individuos, así como medimos el impacto de eventos críticos en el comportamiento del sistema. Para ello, hemos propuesto modelos que explican las estructuras globales y la dinámica emergente con que fluye la información en el sistema. Para los estudios de la red social Twitter, hemos basado nuestros análisis en conversaciones puntuales, tales como protestas políticas, grandes acontecimientos o procesos electorales. A partir de los mensajes de las conversaciones, identificamos a los usuarios que participan y construimos redes de interacciones entre los mismos. Específicamente, construimos una red para representar quién recibe los mensajes de quién y otra red para representar quién propaga los mensajes de quién. En general, hemos encontrado que estas estructuras tienen propiedades complejas, tales como crecimiento explosivo y distribuciones de grado libres de escala. En base a la topología de estas redes, hemos indentificado tres tipos de usuarios que determinan el flujo de información según su actividad e influencia. Para medir la influencia de los usuarios en las conversaciones, hemos introducido una nueva medida llamada eficiencia de usuario. La eficiencia se define como el número de retransmisiones obtenidas por mensaje enviado, y mide los efectos que tienen los esfuerzos individuales sobre la reacción colectiva. Hemos observado que la distribución de esta propiedad es ubicua en varias conversaciones de Twitter, sin importar sus dimensiones ni contextos. Con lo cual, sugerimos que existe universalidad en la relación entre esfuerzos individuales y reacciones colectivas en Twitter. Para explicar los factores que determinan la emergencia de la distribución de eficiencia, hemos desarrollado un modelo computacional que simula la propagación de mensajes en la red social de Twitter, basado en el mecanismo de cascadas independientes. Este modelo nos permite medir el efecto que tienen sobre la distribución de eficiencia, tanto la topología de la red social subyacente, como la forma en que los usuarios envían mensajes. Los resultados indican que la emergencia de un grupo selecto de usuarios altamente eficientes depende de la heterogeneidad de la red subyacente y no del comportamiento individual. Por otro lado, hemos desarrollado técnicas para inferir el grado de polarización política en redes sociales. Proponemos una metodología para estimar opiniones en redes sociales y medir el grado de polarización en las opiniones obtenidas. Hemos diseñado un modelo donde estudiamos el efecto que tiene la opinión de un pequeño grupo de usuarios influyentes, llamado élite, sobre las opiniones de la mayoría de usuarios. El modelo da como resultado una distribución de opiniones sobre la cual medimos el grado de polarización. Aplicamos nuestra metodología para medir la polarización en redes de difusión de mensajes, durante una conversación en Twitter de una sociedad políticamente polarizada. Los resultados obtenidos presentan una alta correspondencia con los datos offline. Con este estudio, hemos demostrado que la metodología propuesta es capaz de determinar diferentes grados de polarización dependiendo de la estructura de la red. Finalmente, hemos estudiado el comportamiento humano a partir de datos de telefonía móvil. Por una parte, hemos caracterizado el impacto que tienen desastres naturales, como innundaciones, sobre el comportamiento colectivo. Encontramos que los patrones de comunicación se alteran de forma abrupta en las áreas afectadas por la catástofre. Con lo cual, demostramos que se podría medir el impacto en la región casi en tiempo real y sin necesidad de desplegar esfuerzos en el terreno. Por otra parte, hemos estudiado los patrones de actividad y movilidad humana para caracterizar las interacciones entre regiones de un país en desarrollo. Encontramos que las redes de llamadas y trayectorias humanas tienen estructuras de comunidades asociadas a regiones y centros urbanos. En resumen, hemos mostrado que es posible entender procesos sociales complejos por medio del análisis de datos de actividad humana y la teoría de redes complejas. A lo largo de la tesis, hemos comprobado que fenómenos sociales como la influencia, polarización política o reacción a eventos críticos quedan reflejados en los patrones estructurales y dinámicos que presentan la redes construidas a partir de datos de conversaciones en redes sociales de Internet o telefonía móvil. ABSTRACT During daily routines, we are constantly interacting with electronic devices and telecommunication services. Unconsciously, we are massively leaving traces of our activity in the service providers’ databases. These new data sources have the dimensions required to enable the observation of human behavioral patterns at large scales. As a result, there has been an unprecedented explosion of data-driven social research. In this thesis, we develop computational and mathematical methods to analyze social systems by means of the combined study of human activity data and the theory of complex networks. Our goal is to characterize and understand the emergent systems from human interactions on the new technological spaces, such as the online social network Twitter and mobile phones. We analyze systems by means of the construction of complex networks and temporal series, studying their structure, functioning and temporal evolution. We also investigate on the nature of the observed patterns, by means of the mechanisms that rule the interactions among individuals, as well as on the impact of critical events on the system’s behavior. For this purpose, we have proposed models that explain the global structures and the emergent dynamics of information flow in the system. In the studies of the online social network Twitter, we have based our analysis on specific conversations, such as political protests, important announcements and electoral processes. From the messages related to the conversations, we identify the participant users and build networks of interactions with them. We specifically build one network to represent whoreceives- whose-messages and another to represent who-propagates-whose-messages. In general, we have found that these structures have complex properties, such as explosive growth and scale-free degree distributions. Based on the topological properties of these networks, we have identified three types of user behavior that determine the information flow dynamics due to their influence. In order to measure the users’ influence on the conversations, we have introduced a new measure called user efficiency. It is defined as the number of retransmissions obtained by message posted, and it measures the effects of the individual activity on the collective reacixtions. We have observed that the probability distribution of this property is ubiquitous across several Twitter conversation, regardlessly of their dimension or social context. Therefore, we suggest that there is a universal behavior in the relationship between individual efforts and collective reactions on Twitter. In order to explain the different factors that determine the user efficiency distribution, we have developed a computational model to simulate the diffusion of messages on Twitter, based on the mechanism of independent cascades. This model, allows us to measure the impact on the emergent efficiency distribution of the underlying network topology, as well as the way that users post messages. The results indicate that the emergence of an exclusive group of highly efficient users depends upon the heterogeneity of the underlying network instead of the individual behavior. Moreover, we have also developed techniques to infer the degree of polarization in social networks. We propose a methodology to estimate opinions in social networks and to measure the degree of polarization in the obtained opinions. We have designed a model to study the effects of the opinions of a small group of influential users, called elite, on the opinions of the majority of users. The model results in an opinions distribution to which we measure the degree of polarization. We apply our methodology to measure the polarization on graphs from the messages diffusion process, during a conversation on Twitter from a polarized society. The results are in very good agreement with offline and contextual data. With this study, we have shown that our methodology is capable of detecting several degrees of polarization depending on the structure of the networks. Finally, we have also inferred the human behavior from mobile phones’ data. On the one hand, we have characterized the impact of natural disasters, like flooding, on the collective behavior. We found that the communication patterns are abruptly altered in the areas affected by the catastrophe. Therefore, we demonstrate that we could measure the impact of the disaster on the region, almost in real-time and without needing to deploy further efforts. On the other hand, we have studied human activity and mobility patterns in order to characterize regional interactions on a developing country. We found that the calls and trajectories networks present community structure associated to regional and urban areas. In summary, we have shown that it is possible to understand complex social processes by means of analyzing human activity data and the theory of complex networks. Along the thesis, we have demonstrated that social phenomena, like influence, polarization and reaction to critical events, are reflected in the structural and dynamical patterns of the networks constructed from data regarding conversations on online social networks and mobile phones.
Resumo:
Los servicios telemáticos han transformando la mayoría de nuestras actividades cotidianas y ofrecen oportunidades sin precedentes con características como, por ejemplo, el acceso ubicuo, la disponibilidad permanente, la independencia del dispositivo utilizado, la multimodalidad o la gratuidad, entre otros. No obstante, los beneficios que destacan en cuanto se reflexiona sobre estos servicios, tienen como contrapartida una serie de riesgos y amenazas no tan obvios, ya que éstos se nutren de y tratan con datos personales, lo cual suscita dudas respecto a la privacidad de las personas. Actualmente, las personas que asumen el rol de usuarios de servicios telemáticos generan constantemente datos digitales en distintos proveedores. Estos datos reflejan parte de su intimidad, de sus características particulares, preferencias, intereses, relaciones sociales, hábitos de consumo, etc. y lo que es más controvertido, toda esta información se encuentra bajo la custodia de distintos proveedores que pueden utilizarla más allá de las necesidades y el control del usuario. Los datos personales y, en particular, el conocimiento sobre los usuarios que se puede extraer a partir de éstos (modelos de usuario) se han convertido en un nuevo activo económico para los proveedores de servicios. De este modo, estos recursos se pueden utilizar para ofrecer servicios centrados en el usuario basados, por ejemplo, en la recomendación de contenidos, la personalización de productos o la predicción de su comportamiento, lo cual permite a los proveedores conectar con los usuarios, mantenerlos, involucrarlos y en definitiva, fidelizarlos para garantizar el éxito de un modelo de negocio. Sin embargo, dichos recursos también pueden utilizarse para establecer otros modelos de negocio que van más allá de su procesamiento y aplicación individual por parte de un proveedor y que se basan en su comercialización y compartición con otras entidades. Bajo esta perspectiva, los usuarios sufren una falta de control sobre los datos que les refieren, ya que esto depende de la voluntad y las condiciones impuestas por los proveedores de servicios, lo cual implica que habitualmente deban enfrentarse ante la disyuntiva de ceder sus datos personales o no acceder a los servicios telemáticos ofrecidos. Desde el sector público se trata de tomar medidas que protejan a los usuarios con iniciativas y legislaciones que velen por su privacidad y que aumenten el control sobre sus datos personales, a la vez que debe favorecer el desarrollo económico propiciado por estos proveedores de servicios. En este contexto, esta tesis doctoral propone una arquitectura y modelo de referencia para un ecosistema de intercambio de datos personales centrado en el usuario que promueve la creación, compartición y utilización de datos personales y modelos de usuario entre distintos proveedores, al mismo tiempo que ofrece a los usuarios las herramientas necesarias para ejercer su control en cuanto a la cesión y uso de sus recursos personales y obtener, en su caso, distintos incentivos o contraprestaciones económicas. Las contribuciones originales de la tesis son la especificación y diseño de una arquitectura que se apoya en un proceso de modelado distribuido que se ha definido en el marco de esta investigación. Éste se basa en el aprovechamiento de recursos que distintas entidades (fuentes de datos) ofrecen para generar modelos de usuario enriquecidos que cubren las necesidades específicas de terceras entidades, considerando la participación del usuario y el control sobre sus recursos personales (datos y modelos de usuario). Lo anterior ha requerido identificar y caracterizar las fuentes de datos con potencial de abastecer al ecosistema, determinar distintos patrones para la generación de modelos de usuario a partir de datos personales distribuidos y heterogéneos y establecer una infraestructura para la gestión de identidad y privacidad que permita a los usuarios expresar sus preferencias e intereses respecto al uso y compartición de sus recursos personales. Además, se ha definido un modelo de negocio de referencia que sustenta las investigaciones realizadas y que ha sido particularizado en dos ámbitos de aplicación principales, en concreto, el sector de publicidad en redes sociales y el sector financiero para la implantación de nuevos servicios. Finalmente, cabe destacar que las contribuciones de esta tesis han sido validadas en el contexto de distintos proyectos de investigación industrial aplicada y también en el marco de proyectos fin de carrera que la autora ha tutelado o en los que ha colaborado. Los resultados obtenidos han originado distintos méritos de investigación como dos patentes en explotación, la publicación de un artículo en una revista con índice de impacto y diversos artículos en congresos internacionales de relevancia. Algunos de éstos han sido galardonados con premios de distintas instituciones, así como en las conferencias donde han sido presentados. ABSTRACT Information society services have changed most of our daily activities, offering unprecedented opportunities with certain characteristics, such as: ubiquitous access, permanent availability, device independence, multimodality and free-of-charge services, among others. However, all the positive aspects that emerge when thinking about these services have as counterpart not-so-obvious threats and risks, because they feed from and use personal data, thus creating concerns about peoples’ privacy. Nowadays, people that play the role of user of services are constantly generating digital data in different service providers. These data reflect part of their intimacy, particular characteristics, preferences, interests, relationships, consumer behavior, etc. Controversy arises because this personal information is stored and kept by the mentioned providers that can use it beyond the user needs and control. Personal data and, in particular, the knowledge about the user that can be obtained from them (user models) have turned into a new economic asset for the service providers. In this way, these data and models can be used to offer user centric services based, for example, in content recommendation, tailored-products or user behavior, all of which allows connecting with the users, keeping them more engaged and involved with the provider, finally reaching customer loyalty in order to guarantee the success of a business model. However, these resources can be used to establish a different kind of business model; one that does not only processes and individually applies personal data, but also shares and trades these data with other entities. From that perspective, the users lack control over their referred data, because it depends from the conditions imposed by the service providers. The consequence is that the users often face the following dilemma: either giving up their personal data or not using the offered services. The Public Sector takes actions in order to protect the users approving, for example, laws and legal initiatives that reinforce privacy and increase control over personal data, while at the same time the authorities are also key players in the economy development that derives from the information society services. In this context, this PhD Dissertation proposes an architecture and reference model to achieve a user-centric personal data ecosystem that promotes the creation, sharing and use of personal data and user models among different providers, while offering users the tools to control who can access which data and why and if applicable, to obtain different incentives. The original contributions obtained are the specification and design of an architecture that supports a distributed user modelling process defined by this research. This process is based on leveraging scattered resources of heterogeneous entities (data sources) to generate on-demand enriched user models that fulfill individual business needs of third entities, considering the involvement of users and the control over their personal resources (data and user models). This has required identifying and characterizing data sources with potential for supplying resources, defining different generation patterns to produce user models from scattered and heterogeneous data, and establishing identity and privacy management infrastructures that allow users to set their privacy preferences regarding the use and sharing of their resources. Moreover, it has also been proposed a reference business model that supports the aforementioned architecture and this has been studied for two application fields: social networks advertising and new financial services. Finally, it has to be emphasized that the contributions obtained in this dissertation have been validated in the context of several national research projects and master thesis that the author has directed or has collaborated with. Furthermore, these contributions have produced different scientific results such as two patents and different publications in relevant international conferences and one magazine. Some of them have been awarded with different prizes.
Resumo:
We have determined the treadmilling rate of brain microtubules (MTs) free of MT-associated proteins (MAPs) at polymer mass steady state in vitro by using [3H]GTP-exchange. We developed buffer conditions that suppressed dynamic instability behavior by ≈10-fold to minimize the contribution of dynamic instability to total tubulin-GTP exchange. The MTs treadmilled rapidly under the suppressed dynamic instability conditions, at a minimum rate of 0.2 μm/min. Thus, rapid treadmilling is an intrinsic property of MAP-free MTs. Further, we show that tau, an axonal stabilizing MAP involved in Alzheimer’s disease, strongly suppresses the treadmilling rate. These results indicate that tau’s function in axons might involve suppression of axonal MT treadmilling. We describe mathematically how treadmilling and dynamic instability are mechanistically distinct MT behaviors. Finally, we present a model that explains how small changes in the critical tubulin subunit concentration at MT minus ends, caused by intrinsic differences in rate constants or regulatory proteins, could produce large changes in the treadmilling rate.
Resumo:
A análise dinâmica experimental tem sido amplamente pesquisada como uma ferramenta de avaliação de integridade de estruturas de concreto armado. Existem técnicas de identificação de danos baseadas em propriedades modais como frequências de ressonâncias, deformadas modais, curvaturas modais e amortecimento. Há também técnicas baseadas na não linearidade da resposta dinâmica, que apesar do grande potencial na detecção de danos, têm sido pouco exploradas nos últimos anos. Este trabalho tem por objetivo avaliar a integridade estrutural de vigas de concreto armado através do comportamento da resposta dinâmica. Foram realizados ensaios dinâmicos em duas vigas de concreto armado com 3,5 m de comprimento, 25 cm de largura, 35 cm de altura e idênticas taxas de armaduras, mas configuradas com barras de aço de diferentes diâmetros, 2 ϕ 16 mm e 8 ϕ 8 mm, respectivamente. Tais vigas, inicialmente íntegras, foram submetidas a ciclos de carregamento e descarregamento com intensidades crescentes até atingir a ruptura do elemento. Após cada ciclo, as propriedades dinâmicas foram avaliadas experimentalmente, com o emprego de técnicas de excitação por sinais do tipo aleatório e tipo transiente, respectivamente, visando determinar parâmetros que indiquem a deterioração gradativa do elemento. Nesses ensaios dinâmicos aplicaram-se diferentes amplitudes da força de excitação. Verificou-se que o aumento da amplitude da força dinâmica de excitação provocou reduções nos valores das frequências de ressonância de 1,1% e 2,4%, associadas, respectivamente, às excitações aleatórias e transientes; e um comportamento não linear dos índices de amortecimento, associados às excitações aleatórias, mantendo um crescimento linear com as excitações transientes. Constatou-se, ainda, que os valores das frequências de ressonância decrescem com a redução de rigidez mecânica, diminuída com o aumento do nível de fissuração induzido nos modelos. Já os valores dos índices de amortecimento, após cada ciclo, se comportaram de forma não linear e assumiram diferentes valores, conforme a técnica de excitação empregada. Acredita-se que esta não linearidade está relacionada aos danos provocados no elemento pela solicitação estrutural e, por consequência, ao processo de como a dissipação de energia é empregada no processo de instauração, configuração e propagação das fissuras nos elementos de concreto armado.
Resumo:
In this paper an agent-based approach for anomalies monitoring in distributed systems such as computer networks, or Grid systems is proposed. This approach envisages on-line and off-line monitoring in order to analyze users’ activity. On-line monitoring is carried in real time, and is used to predict user actions. Off-line monitoring is done after the user has ended his work, and is based on the analysis of statistical information obtained during user’s work. In both cases neural networks are used in order to predict user actions and to distinguish normal and anomalous user behavior.
Resumo:
Knowing how consumers perceive travel websites can help practitioners better understand consumers’ online requirements. This paper reports the findings of a longitudinal study that investigated the changes and trends in the profile and behavior of online travel-website users in Hong Kong. The profiles of e-buyers and e-browsers in 2009, when compared with those established by prior studies conducted in 2000 and 2007, point in a new direction for practitioners and researchers investigating online travelwebsite user behavior. The results indicated that more middle-aged consumers have become online travel-website users, and that website security and price are perceived to be the most important factors for travel-website use by both e-browsers and e-buyers.
Resumo:
MOREIRA, Luciana Moreira; SILVA, Armando Malheiro da. Impacto das tecnologias digitais nas bibliotecas universitarias: reflexões sobre o tema. Informaçao e sociedade: estudos. Joao Pessoa, v.19, n.3, p. 125-132,2009.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
MOREIRA, Luciana Moreira; SILVA, Armando Malheiro da. Impacto das tecnologias digitais nas bibliotecas universitarias: reflexões sobre o tema. Informaçao e sociedade: estudos. Joao Pessoa, v.19, n.3, p. 125-132,2009.
Resumo:
In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.
Resumo:
Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the system’s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes five significant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identifies a locality richness which exists naturally in connected objects that contain a root object and its reachable set— ‘rooted sub-graphs’. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artificial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for configuring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-specific and configuring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks.
Resumo:
Background: The enduring aging of the world population and prospective increase of age-related chronic diseases urge the implementation of new models for healthcare delivery. One strategy relies on ICT (Information and Communications Technology) home-based solutions allowing clients to pursue their treatments without institutionalization. Stroke survivors are a particular population that could strongly benefit from such solutions, but is not yet clear what the best approach is for bringing forth an adequate and sustainable usage of home-based rehabilitation systems. Here we explore two possible approaches: coaching and gaming. Methods: We performed trials with 20 healthy participants and 5 chronic stroke survivors to study and compare execution of an elbow flexion and extension task when performed within a coaching mode that provides encouragement or within a gaming mode. For each mode we analyzed compliance, arm movement kinematics and task scores. In addition, we assessed the usability and acceptance of the proposed modes through a customized self-report questionnaire. Results: In the healthy participants sample, 13/20 preferred the gaming mode and rated it as being significantly more fun (p < .05), but the feedback delivered by the coaching mode was subjectively perceived as being more useful (p < .01). In addition, the activity level (number of repetitions and total movement of the end effector) was significantly higher (p <.001) during coaching. However, the quality of movements was superior in gaming with a trend towards shorter movement duration (p=.074), significantly shorter travel distance (p <.001), higher movement efficiency (p <.001) and higher performance scores (p <.001). Stroke survivors also showed a trend towards higher activity levels in coaching, but with more movement quality during gaming. Finally, both training modes showed overall high acceptance. Conclusions: Gaming led to higher enjoyment and increased quality in movement execution in healthy participants. However, we observed that game mechanics strongly determined user behavior and limited activity levels. In contrast, coaching generated higher activity levels. Hence, the purpose of treatment and profile of end-users has to be considered when deciding on the most adequate approach for home based stroke rehabilitation.
Resumo:
Background: The enduring aging of the world population and prospective increase of age-related chronic diseases urge the implementation of new models for healthcare delivery. One strategy relies on ICT (Information and Communications Technology) home-based solutions allowing clients to pursue their treatments without institutionalization. Stroke survivors are a particular population that could strongly benefit from such solutions, but is not yet clear what the best approach is for bringing forth an adequate and sustainable usage of home-based rehabilitation systems. Here we explore two possible approaches: coaching and gaming. Methods: We performed trials with 20 healthy participants and 5 chronic stroke survivors to study and compare execution of an elbow flexion and extension task when performed within a coaching mode that provides encouragement or within a gaming mode. For each mode we analyzed compliance, arm movement kinematics and task scores. In addition, we assessed the usability and acceptance of the proposed modes through a customized self-report questionnaire. Results: In the healthy participants sample, 13/20 preferred the gaming mode and rated it as being significantly more fun (p < .05), but the feedback delivered by the coaching mode was subjectively perceived as being more useful (p < .01). In addition, the activity level (number of repetitions and total movement of the end effector) was significantly higher (p <.001) during coaching. However, the quality of movements was superior in gaming with a trend towards shorter movement duration (p=.074), significantly shorter travel distance (p <.001), higher movement efficiency (p <.001) and higher performance scores (p <.001). Stroke survivors also showed a trend towards higher activity levels in coaching, but with more movement quality during gaming. Finally, both training modes showed overall high acceptance. Conclusions: Gaming led to higher enjoyment and increased quality in movement execution in healthy participants. However, we observed that game mechanics strongly determined user behavior and limited activity levels. In contrast, coaching generated higher activity levels. Hence, the purpose of treatment and profile of end-users has to be considered when deciding on the most adequate approach for home based stroke rehabilitation.
Resumo:
Conventional threading operations involve two distinct machining processes: drilling and threading. Therefore, it is time consuming for the tools must be changed and the workpiece has to be moved to another machine. This paper presents an analysis of the combined process (drilling followed by threading) using a single tool for both operations: the tap-milling tool. Before presenting the methodology used to evaluate this hybrid tool, the ODS (operating deflection shapes) basics is shortly described. ODS and finite element modeling (FEM) were used during this research to optimize the process aiming to achieve higher stable machining conditions and increasing the tool life. Both methods allowed the determination of the natural frequencies and displacements of the machining center and optimize the workpiece fixture system. The results showed that there is an excellent correlation between the dynamic stability of the machining center-tool holder and the tool life, avoiding a tool premature catastrophic failure. Nevertheless, evidence showed that the tool is very sensitive to work conditions. Undoubtedly, the use of ODS and FEM eliminate empiric decisions concerning the optimization of machining conditions and increase drastically the tool life. After the ODS and FEM studies, it was possible to optimize the process and work material fixture system and machine more than 30,000 threaded holes without reaching the tool life limit and catastrophic fail.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.