877 resultados para dynamic factor models
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
Investment in capacity expansion remains one of the most critical decisions for a manufacturing organisation with global production facilities. Multiple factors need to be considered making the decision process very complex. The purpose of this paper is to establish the state-of-the-art in multi-factor models for capacity expansion of manufacturing plants within a corporation. The research programme consisting of an extensive literature review and a structured assessment of the strengths and weaknesses of the current research is presented. The study found that there is a wealth of mathematical multi-factor models for evaluating capacity expansion decisions however no single contribution captures all the different facets of the problem.
Resumo:
We estimate a dynamic model of mortgage default for a cohort of Colombian debtors between 1997 and 2004. We use the estimated model to study the effects on default of a class of policies that affected the evolution of mortgage balances in Colombia during the 1990's. We propose a framework for estimating dynamic behavioral models accounting for the presence of unobserved state variables that are correlated across individuals and across time periods. We extend the standard literature on the structural estimation of dynamic models by incorporating an unobserved common correlated shock that affects all individuals' static payoffs and the dynamic continuation payoffs associated with different decisions. Given a standard parametric specification the dynamic problem, we show that the aggregate shocks are identified from the variation in the observed aggregate behavior. The shocks and their transition are separately identified, provided there is enough cross-sectionavl ariation of the observeds tates.
Resumo:
Confirmatory factor analyses were conducted to evaluate the factorial validity of the Toronto Alexithymia Scale in an alcohol-dependent sample. Several factor models were examined, but all models were rejected given their poor fit. A revision of the TAS-20 in alcohol-dependent populations may be needed.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
Rail steel bridges are vulnerable to high impact forces due to the passage of trains; unfortunately the determination of these transient impact forces is not straightforward as these are affected by a large number of parameters, including the wagon design, the wheel-rail contact and the design parameters of the bridge deck and track, as well as the operational parameters – wheel load and speed. To determine these impact forces, a detailed rail train-track/bridge dynamic interaction model has been developed, which includes a comprehensive train model using multi-body dynamics approach and a flexible track/bridge model using Euler– Bernoulli beam theory. Single and multi-span bridges have been modelled to examine their dynamic characteristics. From the single span bridge, the train critical speed is determined; the minimum distance of two peak loadings is found to affect the train critical speed. The impact factor and the dynamic characteristics are discussed.
Resumo:
BACKGROUND CONTEXT: The Neck Disability Index frequently is used to measure outcomes of the neck. The statistical rigor of the Neck Disability Index has been assessed with conflicting outcomes. To date, Confirmatory Factor Analysis of the Neck Disability Index has not been reported for a suitably large population study. Because the Neck Disability Index is not a condition-specific measure of neck function, initial Confirmatory Factor Analysis should consider problematic neck patients as a homogenous group. PURPOSE: We sought to analyze the factor structure of the Neck Disability Index through Confirmatory Factor Analysis in a symptomatic, homogeneous, neck population, with respect to pooled populations and gender subgroups. STUDY DESIGN: This was a secondary analysis of pooled data. PATIENT SAMPLE: A total of 1,278 symptomatic neck patients (67.5% female, median age 41 years), 803 nonspecific and 475 with whiplash-associated disorder. OUTCOME MEASURES: The Neck Disability Index was used to measure outcomes. METHODS: We analyzed pooled baseline data from six independent studies of patients with neck problems who completed Neck Disability Index questionnaires at baseline. The Confirmatory Factor Analysis was considered in three scenarios: the full sample and separate sexes. Models were compared empirically for best fit. RESULTS: Two-factor models have good psychometric properties across both the pooled and sex subgroups. However, according to these analyses, the one-factor solution is preferable from both a statistical perspective and parsimony. The two-factor model was close to significant for the male subgroup (p<.07) where questions separated into constructs of mental function (pain, reading headaches and concentration) and physical function (personal care, lifting, work, driving, sleep, and recreation). CONCLUSIONS: The Neck Disability Index demonstrated a one-factor structure when analyzed by Confirmatory Factor Analysis in a pooled, homogenous sample of neck problem patients. However, a two-factor model did approach significance for male subjects where questions separated into constructs of mental and physical function. Further investigations in different conditions, subgroup and sex-specific populations are warranted.
Resumo:
This thesis studies binary time series models and their applications in empirical macroeconomics and finance. In addition to previously suggested models, new dynamic extensions are proposed to the static probit model commonly used in the previous literature. In particular, we are interested in probit models with an autoregressive model structure. In Chapter 2, the main objective is to compare the predictive performance of the static and dynamic probit models in forecasting the U.S. and German business cycle recession periods. Financial variables, such as interest rates and stock market returns, are used as predictive variables. The empirical results suggest that the recession periods are predictable and dynamic probit models, especially models with the autoregressive structure, outperform the static model. Chapter 3 proposes a Lagrange Multiplier (LM) test for the usefulness of the autoregressive structure of the probit model. The finite sample properties of the LM test are considered with simulation experiments. Results indicate that the two alternative LM test statistics have reasonable size and power in large samples. In small samples, a parametric bootstrap method is suggested to obtain approximately correct size. In Chapter 4, the predictive power of dynamic probit models in predicting the direction of stock market returns are examined. The novel idea is to use recession forecast (see Chapter 2) as a predictor of the stock return sign. The evidence suggests that the signs of the U.S. excess stock returns over the risk-free return are predictable both in and out of sample. The new "error correction" probit model yields the best forecasts and it also outperforms other predictive models, such as ARMAX models, in terms of statistical and economic goodness-of-fit measures. Chapter 5 generalizes the analysis of univariate models considered in Chapters 2 4 to the case of a bivariate model. A new bivariate autoregressive probit model is applied to predict the current state of the U.S. business cycle and growth rate cycle periods. Evidence of predictability of both cycle indicators is obtained and the bivariate model is found to outperform the univariate models in terms of predictive power.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Resumo:
Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of "trans"-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1alpha protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.
Resumo:
The aim of this paper was to confirm the factor structure of the 20-item Beck Hopelessness Scale in a non-clinical population. Previous research has highlighted a lack of clarity in its construct validity with regards to this population.
Based on previous factor analytic findings from both clinical and non-clinical studies, 13 separate confirmatory factor models were specified and estimated using LISREL 8.72 to test the one, two and three-factor models.
Psychology and medical students at Queen's University, Belfast (n = 581) completed both the BHS and the Beck Depression Inventory (BDI).
All models showed reasonable fit, but only one, a four-item single-factor model demonstrated a nonsignificant chi-squared statistic. These four items can be used to derive a Short-Form BHS (SBHS) in which increasing scores (0-4) corresponded with increasing scores in the BDI. The four items were also drawn from all three of Beck's proposed triad, and included both positively and negatively scored items.
This study in a UK undergraduate non-clinical population suggests that the BHS best measures a one-factor model of hopelessness. It appears that a shorter four-item scale can also measure this one-factor model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Understanding the dynamics of interest rates and the term structure has important implications for issues as diverse as real economic activity, monetary policy, pricing of interest rate derivative securities and public debt financing. Our paper follows a longstanding tradition of using factor models of interest rates but proposes a semi-parametric procedure to model interest rates.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
This paper considers an overlapping generations model in which capital investment is financed in a credit market with adverse selection. Lenders’ inability to commit ex-ante not to bailout ex-post, together with a wealthy position of entrepreneurs gives rise to the soft budget constraint syndrome, i.e. the absence of liquidation of poor performing firms on a regular basis. This problem arises endogenously as a result of the interaction between the economic behavior of agents, without relying on political economy explanations. We found the problem more binding along the business cycle, providing an explanation to creditors leniency during booms in some LatinAmerican countries in the late seventies and early nineties.