923 resultados para drug activity
Resumo:
Extended-spectrum β-lactamases (ESBLs) prevalence was studied in the north of Portugal, among 193 clinical isolates belonging to citizens in a district in the boundaries between this country and Spain from a total of 7529 clinical strains. In the present study we recovered some members of Enterobacteriaceae family, producing ESBL enzymes, including Escherichia coli (67.9%), Klebsiella pneumoniae (30.6%), Klebsiella oxytoca (0.5%), Enterobacter aerogenes (0.5%), and Citrobacter freundii (0.5%). β-lactamases genes blaTEM, blaSHV, and blaCTX-M were screened by polymerase chain reaction (PCR) and sequencing approaches. TEM enzymes were among the most prevalent types (40.9%) followed by CTX-M (37.3%) and SHV (23.3%). Among our sample of 193 ESBL-producing strains 99.0% were resistant to the fourth-generation cephalosporin cefepime. Of the 193 isolates 81.3% presented transferable plasmids harboring genes. Clonal studies were performed by PCR for the enterobacterial repetitive intragenic consensus (ERIC) sequences. This study reports a high diversity of genetic patterns. Ten clusters were found for E. coli isolates and five clusters for K. pneumoniae strains by means of ERIC analysis. In conclusion, in this country, the most prevalent type is still the TEM-type, but CTX-M is growing rapidly.
Resumo:
Objective: Our research program has focused on the development of promising, soft alkylating N-phenyl-N’-(2-chloroethyl)urea (CEU) compounds which acylate the glutamic acid-198 of β-tubulin, near the binding site of colchicum alkaloids. CEUs inhibit the motility of cancerous cells in vitro and, interestingly, exhibit antiangiogenic and anticancer activity in vivo. Mitotic arrest induced by microtubule-interfering agents such as CEUs remains the major mechanism of their anticancer activity, leading to apoptosis. However, we recently demonstrated that microtubule disruption by CEUs and other common antimicrotubule agents greatly alters the integrity and organization of microtubule-associated structures, the focal adhesion contact, thereby initiating anoikis, an apoptosis-like cell death mechanism caused by the loss of cell contact with the extracellular matrix. Methods: To ascertain the activated signaling pathway profile of CEUs, flow cytometry, Western blot, immunohistochemistry and transfection experiments were performed. Wound-healing and chick embryo assays were carried out to evaluate the antiangiogenic potency of CEUs. Results: CEU-induced apoptosis involved early cell cycle arrest in G2/M and increased level of CDK1/cycline B proteins. These signaling events were followed by the specific activation of the intrinsic apoptosis pathway, involving loss of mitochondrial membrane potential (Δψm) and ROS production, cytochrome c release from mitochondria, caspase activation, AIF nuclear translocation, PARP cleavage and nuclear fragmentation. CEUs maintained their efficacy on cells plated on pro-survival extracellular matrices or exhibiting overexpression of P-glycoprotein or the anti-apoptotic protein Bcl-2. Conclusion: Our results suggest that CEUs represent a promising new class of antimicrotubule, antiangiogenic and pro-anoikis agents.
Resumo:
Polymer-drug conjugates have demonstrated clinical potential in the context of anticancer therapy. However, such promising results have, to date, failed to translate into a marketed product. Polymer-drug conjugates rely on two factors for activity: (i) the presence of a defective vasculature, for passive accumulation of this technology into the tumour tissue (enhanced permeability and retention (EPR) effect) and (ii) the presence of a specific trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B). Here, we retrospectively analyse literature data to investigate which tumour types have proved more responsive to polymer-drug conjugates and to determine correlations between the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates). An analysis of literature data on cathepsin content in various tumour types showed that these tumour types had high cathepsin content (up to 3835 ng/mg for lung cancer), although marked heterogeneity was observed across different studies. In addition, these tumour types were also reported as having a high EPR effect. Our results suggest that a pre-screening of patient population could bring a more marked clinical benefit.
Resumo:
Forty Cryptococcus gattii strains were submitted to antifungal susceptibility testing with fluconazole, itraconazole, amphotericin B and terbinafine. The minimum inhibitory concentration (MIC) ranges were 0.5-64.0 for fluconazole, < 0.015-0.25 for itraconazole, 0.015-0.5 for amphotericin B and 0.062-2.0 for terbinafine. A bioassay for the quantitation of fluconazole in murine brain tissue was developed. Swiss mice received daily injections of the antifungal, and their brains were withdrawn at different times over the 14-day study period. The drug concentrations varied from 12.98 to 44.60 mu g/mL. This assay was used to evaluate the therapy with fluconazole in a model of infection caused by C. gattii. Swiss mice were infected intracranially and treated with fluconazole for 7, 10 or 14 days. The treatment reduced the fungal burden, but an increase in fungal growth was observed on day 14. The MIC for fluconazole against sequential isolates was 16 mu g/mL, except for the isolates obtained from animals treated for 14 days (MIC = 64 mu g/mL). The quantitation of cytokines revealed a predominance of IFN-gamma and IL-12 in the non-treated group and elevation of IL-4 and IL-10 in the treated group. Our data revealed the possibility of acquired resistance during the antifungal drug therapy.
Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug surarnin
Resumo:
Suramin, a synthetic polysulfonated compound, developed initially for the treatment of African trypanosomiasis and onchocerciasis, is currently used for the treatment of several medically relevant disorders. Suramin, heparin, and other polyanions inhibit the myotoxic activity of Lys49 phospholipase A(2) analogues both in vitro and in vivo, and are thus of potential importance as therapeutic agents in the treatment of viperid snake bites. Due to its conformational flexibility around the single bonds that link the central phenyl rings to the secondary amide backbone, the symmetrical suramin molecule binds by an induced-fit mechanism complementing the hydrophobic surfaces of the dimer and adopts a novel conformation that lacks C2 symmetry in the dimeric crystal structure of the suramin-Bothrops asper myotoxin II complex. The simultaneous binding of suramin at the surfaces of the two monomers partially restricts access to the nominal active sites and significantly changes the overall charge of the interfacial recognition face of the protein, resulting in the inhibition of myotoxicity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The mushroom Agaricus blazei has been extensively investigated because of evidence of its antimutagenic, antitumor, and anticarcinogenic activities. This study investigated the clastogenic and/or anticlastogenic activity of aqueous extract of Agaricus blazei (10% w/v) in drug-metabolizing rat hepatoma tissue cells (HTCs), with continuous treatment and treatment during different phases of the cell cycle. DNA damage was induced utilizing two directacting agents-methyl methane sulfonate and ethyl methane sulfonate-and two indirect-acting agents-2-aminoanthracene and cyclophosphamide. The aqueous extract of A. blazei with either continuous treatment or treatment during different phases of the cell cycle showed clastogenic activity. The results with continuous treatment showed that A. blazei does not protect against DNA damage-inducing agents that are direct acting. Meanwhile, when combined with indirect-acting agents, a protective effect was demonstrated. A protective effect was also found during different phases of the cell cycle when cells were treated with indirect-acting agents. The protective effects against indirect-acting agents (continuous treatment and during the different phases of the cell cycle) suggest that A. blazei may provide some health benefits to the public when used as a functional food.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Solid dispersions (SDs) are an approach to increasing the water solubility and bioavailability of lipophilic drugs such as ursolic acid (UA), a triterpenoid with trypanocidal activity. In this work, Gelucire 50/13, a surfactant compound with permeability-enhancing properties, and silicon dioxide, a drying adjuvant, were employed to produce SDs with UA. SDs and physical mixtures (PMs) in different drug/carrier ratios were characterized and compared using differential scanning calorimetry, hot stage microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size, water solubility values, and dissolution profiles. Moreover, LLC-MK2 fibroblast cytotoxicity and trypanocidal activity evaluation were performed to determine the potential of SD as a strategy to improve UA efficacy against Chagas disease. The results demonstrated the conversion of UA from the crystalline to the amorphous state through XRD. FTIR experiments provided evidence of intermolecular interactions among the drug and carriers through carbonyl peak broadening in the SDs. These findings helped explain the enhancement of water solubility from 75.98 mu g/mL in PMs to 293.43 mu g/mL in SDs and the faster drug release into aqueous media compared with pure UA or PMs, which was maintained after 6 months at room temperature. Importantly, improved SD dissolution was accompanied by higher UA activity against trypomastigote forms of Trypanosoma cruzi, but not against mammalian fibroblasts, enhancing the potential of UA for Chagas disease treatment.
Resumo:
OBJECTIVES: The disease alveolar echinococcosis (AE), caused by the larval stage of the cestode Echinococcus multilocularis, is fatal if treatment is unsuccessful. Current treatment options are, at best, parasitostatic, and involve taking benzimidazoles (albendazole, mebendazole) for the whole of a patient's life. In conjunction with the recent development of optimized procedures for E. multilocularis metacestode cultivation, we aimed to develop a rapid and reliable drug screening test, which enables efficient screening of a large number of compounds in a relatively short time frame. METHODS: Metacestodes were treated in vitro with albendazole, the nitro-thiazole nitazoxanide and 29 nitazoxanide derivatives. The resulting leakage of phosphoglucose isomerase (PGI) activity into the medium supernatant was measured and provided an indication of compound efficacy. RESULTS: We show that upon in vitro culture of E. multilocularis metacestodes in the presence of active drugs such as albendazole, the nitro-thiazole nitazoxanide and 30 different nitazoxanide derivatives, the activity of PGI in culture supernatants increased. The increase in PGI activity correlated with the progressive degeneration and destruction of metacestode tissue in a time- and concentration-dependent manner, which allowed us to perform a structure-activity relationship analysis on the thiazolide compounds used in this study. CONCLUSIONS: The assay presented here is inexpensive, rapid, can be used in 24- and 96-well formats and will serve as an ideal tool for first-round in vitro tests on the efficacy of large numbers of antiparasitic compounds.
Resumo:
Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.
Resumo:
Plasma drug-resistant minority HIV-1 variants (DRMV) increase the risk of virological failure to first-line NNRTI antiretroviral therapy (ART). The origin of DRMVs in ART-naive patients, however, remains unclear. In a large pan-European case-control study investigating the clinical relevance of pre-existing DRMVs using 454 pyrosequencing, the six most prevalent plasma DRMVs detected corresponded to G-to-A nucleotide mutations (V90I, V106I, V108I, E138K, M184I and M230I). Here, we evaluated if such DRMVs could have emerged from APOBEC3G/F activity. Out of 236 ART-naïve evaluated subjects, APOBEC3G/F hypermutation signatures were detected in plasma viruses of 14 (5.9%) individuals. Samples with minority E138K, M184I, and M230I mutations, but not those with V90I, V106I, or V108I were significantly associated with APOBEC3G/F activity (Fisher's p<0.005), defined as presence of >0.5% of sample sequences with an APOBEC3G/F signature. Mutations E138K, M184I and M230I co-occurred in the same sequence as APOBEC3G/F signatures in 3/9 (33%), 5/11 (45%) and 4/8 (50%) of samples, respectively; such linkage was not found for V90I, V106I or V108I. In-frame STOP codons were observed in 1.5% of all clonal sequences; 14.8% of them co-occurred with APOBEC3G/F signatures. APOBEC3G/F-associated E138K, M184I and M230I appeared within clonal sequences containing in-frame STOP codons in 2/3 (66%), 5/5 (100%) and 4/4 (100%) of the samples. In a reanalysis of the parent case-control study, presence of APOBEC3G/F signatures was not associated with virological failure. In conclusion, the contribution of APOBEC3G/F editing to the development of DRMVs is very limited and does not affect the efficacy of NNRTI ART.
Resumo:
A library of 426 FDA-approved drugs was screened for in vitro activity against E. multilocularis metacestodes employing the phosphoglucose isomerase (PGI) assay. Initial screening at 20 µM revealed that 7 drugs induced considerable metacestode damage, and further dose-response studies revealed that bortezomib (BTZ), a proteasome inhibitor developed for the chemotherapy of myeloma, displayed high anti-metacestodal activity with an EC50 of 0.6 µM. BTZ treatment of E. multilocularis metacestodes led to an accumulation of ubiquinated proteins and unequivocally parasite death. In-gel zymography assays using E. multilocularis extracts demonstrated BTZ-mediated inhibition of protease activity in a band of approximately 23 kDa, the same size at which the proteasome subunit beta 5 of E. multilocularis could be detected by Western blot. Balb/c mice experimentally infected with E. multilocularis metacestodes were used to assess BTZ treatment, starting at 6 weeks post-infection by intraperitoneal injection of BTZ. This treatment led to reduced parasite weight, but to a degree that was not statistically significant, and it induced adverse effects such as diarrhea and neurological symptoms. In conclusion, the proteasome was identified as a drug target in E. multilocularis metacestodes that can be efficiently inhibited by BTZ in vitro. However, translation of these findings into in vivo efficacy requires further adjustments of treatment regimens using BTZ, or possibly other proteasome inhibitors.
Resumo:
The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their-remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present Study describes the first steps towards exploiting the cyclotide framework by synthesizing and structurally characterizing two grafted analogues of the cyclotide kalata B1. The modified peptides have polar or charged residues substituted for residues that form part of a surface-exposed hydrophobic patch that plays a significant role in the folding and biological activity of kalata B1. Both analogues retain the native cyclotide fold, but lack the undesired haemolytic activity of their parent molecule, kalata B1. This finding confirms the tolerance of the cyclotide framework to residue Substitutions and opens up possibilities for the Substitution of biologically active peptide epitopes into the framework.