981 resultados para double-stranded RNA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal expression of major histocompatibility complex (MHC) class I and class II in various tissues is associated with autoimmune disease. Autoimmune responses can be triggered by viral infections or tissue injuries. We show that the ability of a virus or a tissue injury to increase MHC gene expression is duplicated by any fragment of double-stranded (ds) DNA or dsRNA introduced into the cytoplasm of nonimmune cells. Activation is sequence-independent, is induced by ds polynucleotides as small as 25 bp in length, and is not duplicated by single-stranded polynucleotides. In addition to causing abnormal MHC expression, the ds nucleic acids increase the expression of genes necessary for antigen processing and presentation: proteasome proteins (e.g., LMP2), transporters of antigen peptides; invariant chain, HLA-DM, and the costimulatory molecule B7.1. The mechanism is different from and additive to that of γ-interferon (γIFN), i.e., ds polynucleotides increase class I much more than class II, whereas γIFN increases class II more than class I. The ds nucleic acids also induce or activate Stat1, Stat3, mitogen-activated protein kinase, NF-κB, the class II transactivator, RFX5, and the IFN regulatory factor 1 differently from γIFN. CpG residues are not responsible for this effect, and the action of the ds polynucleotides could be shown in a variety of cell types in addition to thyrocytes. We suggest that this phenomenon is a plausible mechanism that might explain how viral infection of tissues or tissue injury triggers autoimmune disease; it is potentially relevant to host immune responses induced during gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that convert adenosine to inosine within double-stranded RNA. In the 12 years since the discovery of ADARs only a few natural substrates have been identified. These substrates were found by chance, when genomically encoded adenosines were identified as guanosines in cDNAs. To advance our understanding of the biological roles of ADARs, we developed a method for systematically identifying ADAR substrates. In our first application of the method, we identified five additional substrates in Caenorhabditis elegans. Four of those substrates are mRNAs edited in untranslated regions, and one is a noncoding RNA edited throughout its length. The edited regions are predicted to form long hairpin structures, and one of the RNAs encodes POP-1, a protein involved in cell fate decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double helix is a ubiquitous feature of RNA molecules and provides a target for nucleases involved in RNA maturation and decay. Escherichia coli ribonuclease III participates in maturation and decay pathways by site-specifically cleaving double-helical structures in cellular and viral RNAs. The site of cleavage can determine RNA functional activity and half-life and is specified in part by local tertiary structure elements such as internal loops. The involvement of base pair sequence in determining cleavage sites is unclear, because RNase III can efficiently degrade polymeric double-stranded RNAs of low sequence complexity. An alignment of RNase III substrates revealed an exclusion of specific Watson–Crick bp sequences at defined positions relative to the cleavage site. Inclusion of these “disfavored” sequences in a model substrate strongly inhibited cleavage in vitro by interfering with RNase III binding. Substrate cleavage also was inhibited by a 3-bp sequence from the selenocysteine-accepting tRNASec, which acts as an antideterminant of EF-Tu binding to tRNASec. The inhibitory bp sequences, together with local tertiary structure, can confer site specificity to cleavage of cellular and viral substrates without constraining the degradative action of RNase III on polymeric double-stranded RNA. Base pair antideterminants also may protect double-helical elements in other RNA molecules with essential functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome expression of positive-stranded RNA viruses starts with translation rather than transcription. For some viruses, the genome is the only viral mRNA and expression is regulated primarily at the translational level and by limited proteolysis of polyproteins. Other virus groups also generate subgenomic mRNAs later in the reproductive cycle. For nidoviruses, subgenomic mRNA synthesis (transcription) is discontinuous and yields a 5′ and 3′ coterminal nested set of mRNAs. Nidovirus transcription is not essential for genome replication, which relies on the autoprocessing products of two replicase polyproteins that are translated from the genome. We now show that the N-terminal replicase subunit, nonstructural protein 1 (nsp1), of the nidovirus equine arteritis virus is in fact dispensable for replication but crucial for transcription, thereby coupling replicase expression and subgenomic mRNA synthesis in an unprecedented manner. Nsp1 is composed of two papain-like protease domains and a predicted N-terminal zinc finger, which was implicated in transcription by site-directed mutagenesis. The structural integrity of nsp1 is essential, suggesting that the protease domains form a platform for the zinc finger to operate in transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Escherichia coli protein DbpA is unique in its subclass of DEAD box RNA helicases, because it possesses ATPase-specific activity toward the peptidyl transferase center in 23S rRNA. Although its remarkable ATPase activity had been well defined toward various substrates, its RNA helicase activity remained to be characterized. Herein, we show by using biochemical assays and atomic force microscopy that DbpA exhibits ATP-stimulated unwinding activity of RNA duplex regardless of its primary sequence. This work presents an attempt to investigate the action of DEAD box proteins by a single-molecule visualization methodology. Our atomic force microscopy images enabled us to observe directly the unwinding reaction of a DEAD box helicase on long stretches of double-stranded RNA. Specifically, we could differentiate between the binding of DbpA to RNA in the absence of ATP and the formation of a Y-shaped intermediate after its progression through double-stranded RNA in the presence of ATP. Recent studies have questioned the designation of DbpA, in particular, and DEAD box proteins in general as RNA helicases. However, accumulated evidence and the results reported herein suggest that these proteins are indeed helicases that resemble in many aspects the DNA helicases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structures of Watson-Crick base paired 15-nucleobase oligomer strands in A-type or B-type conformation in which one strand [a strand of alternating nucleotide and riboacetal thymidine nucleoside (RT) units, RP] is DNA and the other is composed of alternating nucleotides and riboacetal nucleosides have been studied by molecular mechanics. Analogously, oligomer strands of RNA in place of DNA have been modeled. The calculations indicate that the RP strand is more stable when complexed in an A-type duplex relative to a B-type form and that this conformational preference is presumably due to the more uniform nature of the former. Nearly planar ribose rings were more commonly observed in the minimized structures of the B-type DNA.RP duplexes as compared with A-type duplexes, despite the fact that planar ribofuranose rings are known to be energetically unfavorable in oligonucleotides. Computed relative stabilities of all duplexes containing the RP strand suggest that such heteroduplexes are less stable than the corresponding double-stranded DNA and double-stranded RNA species. These findings are in agreement with experimental results which show, when equivalent sequences were compared, that a DNA.RNA control forms a more stable duplex than RP hound to a complementary single-stranded RNA strand. In contrast, molecular mechanics studies of complementary triple-helical (DNA)2.RP, (DNA)2.DNA, and (DNA)2.RNA structures indicate that the binding of RP as a Hoogsteen strand stabilizes the underlying duplex to a greater extent compared with native oligonucleotides. These calculations suggest that puckering of the ribose ring in the riboacetal linkage leads to a more favorable interaction with a complementary nucleic acid target than the proposed planar geometry and that this puckering may account for the enhanced binding of RP to a double-stranded target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the origin of autoimmune antibodies to double-stranded DNA is not known, the variable-region structures of such antibodies indicate that they are produced in response to antigen-selective stimulation. In accordance with this, results from experiments using artificial complexes of DNA and DNA-binding polypeptides for immunizations have indicated that DNA may induce these antibodies. Hence, the immunogenicity of DNA in vivo may depend upon other structures or processes that may render DNA immunogenic. We report that in vivo expression of a single DNA-binding protein, the polyoma virus T antigen, is sufficient to initiate production of anti-double-stranded DNA and anti-histone antibodies but not a panel of other autoantigens. Expression of a mutant, non-DNA-binding T antigen did result in strong production of antibodies to the T antigen, but only borderline levels of antibodies to DNA and no detectable antibodies to histones. Nonexpressing plasmid DNA containing the complete cDNA sequence for T antigen did not evoke such immune responses, indicating that DNA by itself is not immunogenic in vivo. The results represent a conceptual advance in understanding a potential molecular basis for initiation of autoimmunity in systemic lupus erythematosus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli RecA protein, in the presence of ATP or its analog adenosine 5'-[gamma-thio]triphosphate, polymerizes on single-stranded DNA to form nucleoprotein filaments that can then bind to homologous sequences on duplex DNA. The three-stranded joint molecule formed as a result of this binding event is a key intermediate in general recombination. We have used affinity cleavage to examine this three-stranded joint by incorporating a single thymidine-EDTA.Fe (T*) into the oligonucleotide part of the filament. Our analysis of the cleavage patterns from the joint molecule reveals that the nucleoprotein filament binds in the minor groove of an extended Watson-Crick duplex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmaniavirus (LRV) is a double-stranded RNA virus that persistently infects the protozoan parasite Leishmania. LRV produces a short RNA transcript, corresponding to the 5' end of positive-sense viral RNA, both in vivo and in in vitro polymerase assays. The short transcript is generated by a single site-specific cleavage event in the 5' untranslated region of the 5.3-kb genome. This cleavage event can be reproduced in vitro with purified viral particles and a substrate RNA transcript possessing the viral cleavage site. A region of nucleotides required for cleavage was identified by analyzing the cleavage sites yielding the short transcripts of various LRV isolates. A 6-nt deletion at this cleavage site completely abolished RNA processing. In an in vitro cleavage assay, baculovirus-expressed capsid protein possessed an endonuclease activity identical to that of native virions, showing that the viral capsid protein is the RNA endonuclease. Identification of the LRV capsid protein as an RNA endonuclease is unprecedented among known viral capsid proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If RNA editing could be rationally directed to mutated RNA sequences, genetic diseases caused by certain base substitutions could be treated. Here we use a synthetic complementary RNA oligonucleotide to direct the correction of a premature stop codon mutation in dystrophin RNA. The complementary RNA oligonucleotide was hybridized to a premature stop codon and the hybrid was treated with nuclear extracts containing the cellular enzyme double-stranded RNA adenosine deaminase. When the treated RNAs were translated in vitro, a dramatic increase in expression of a downstream luciferase coding region was observed. The cDNA sequence data are consistent with deamination of the adenosine in the UAG stop codon to inosine by double-stranded RNA adenosine deaminase. Injection of oligonucleotide-mRNA hybrids into Xenopus embryos also resulted in an increase in luciferase expression. These experiments demonstrate the principle of therapeutic RNA editing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trans-activation response element (TAR) found near the 5' end of the viral RNA of the human immunodeficiency virus contains a 3-nt bulge that is recognized by the virally encoded trans-activator protein (Tat), an important mediator of transcriptional activation. Insertion of the TAR bulge into double-stranded RNA is known to result in reduced electrophoretic mobility, suggestive of a bulge-induced bend. Furthermore, NMR studies indicate that Arg causes a change in the structure of the TAR bulge, possibly reducing the bulge angle. However, neither of these effects has been quantified, nor have they been compared with the effects of the TAR-Tat interaction. Recently, an approach for the quantification of bulge-induced bends has been described in which hydrodynamic measurements, employing the method of transient electric birefringence, have yielded precise estimates for the angles of a series of RNA bulges, with the angles ranging from 7 degrees to 93 degrees. In the current study, transient electric birefringence measurements indicate that the TAR bulge introduces a bend of 50 degrees +/- 5 degrees in the absence of Mg2+. Addition of Arg leads to essentially complete straightening of the helix (to < 10 degrees) with a transition midpoint in the 1 mM range. This transition demonstrates specificity for the TAR bulge: no comparable transition was observed for U3 or A3 (control) bulges with differing flanking sequences. An essentially identical structural transition is observed for the Tat-derived peptide, although the transition midpoint for the latter is near 1 microM. Finally, low concentrations of Mg2+ alone reduce the bend angle by approximately 50%, consistent with the effects of Mg2+ on other pyrimidine bulges. This last observation is important in view of the fact that most previous structural/binding studies were performed in the absence of Mg2+.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical analysis of the effects of the environment on charge transport in double-stranded synthetic poly(G)-poly(C) DNA molecules attached to two ideal leads. Coupling of the DNA to the environment results in two effects: (i) localization of carrier functions due to static disorder and (ii) phonon-induced scattering of the carriers between the localized states, resulting in hopping conductivity. A nonlinear Pauli master equation for populations of localized states is used to describe the hopping transport and calculate the electric current as a function of the applied bias. We demonstrate that, although the electronic gap in the density of states shrinks as the disorder increases, the voltage gap in the I-V characteristics becomes wider. A simple physical explanation of this effect is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transgenic tobacco plants, carrying a Potato virus Y (PVY)-NIa hairpin sequence separated by a unique unrelated spacer sequence were specifically silenced and highly resistant to PVY infection. In such plants neither PVY-NIa nor spacer transgene transcripts were detectable by specific quantitative real time reverse transcriptase PCR (RT-qPCR) assays of similar relative efficiencies developed for direct comparative analysis. However, small interfering RNAs (siRNAs) specific for the PVY sequence of the transgene and none specific for the LNYV spacer sequence were detected. Following infection with Cucumber mosaic virus (CMV), which suppresses dsRNA-induced RNA silencing, transcript levels of PVY-NIa as well as spacer sequence increased manifold with the same time course. The cellular abundance of the single-stranded (ss) spacer sequence was consistently higher than that of PVY dsRNA in all cases. The results show that during RNA silencing and its suppression of a hairpin transcript in transgenic tobacco, the ssRNA spacer sequence is affected differently than the dsRNA. In PVY-silenced plants. the spacer is efficiently degraded by a mechanism not involving the accumulation of siRNAs, while following suppression of RNA silencing by CMV, the spacer appears protected from degradation. Crown Copyright (c) 2006 Published by Elsevier B.V. All rights reserved.