981 resultados para dopant assisted-atmospheric pressure photoionization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative-pressure therapy or vacuum-assisted closure (VAC) has been used in clinical applications since the 1940’s and has increased in popularity over the past decade. This dressing technique consists of an open cell foam dressing put into the wound cavity, a vacuum pump produces a negative pressure and an adhesive drape. A controlled sub atmospheric pressure from 75 to 150 mmHg is applied. The vacuum-assisted closure has been applied by many clinicians to chronic wounds in humans; however it cannot be used as a replacement for surgical debridement. The initial treatment for every contaminated wound should be the necrosectomy. The VAC therapy has a complementary function and the range of its indications includes pressure sores, stasis ulcers, chronic wounds such as diabetic foot ulcers, post traumatic and post operative wounds, infected wounds such as necrotizing fasciitis or sternal wounds, soft-tissue injuries, bone exposed injuries, abdominal open wounds and for securing a skin graft. We describe our experience with the VAC dressing used to manage acute and chronic wounds in a series of 135 patients, with excellent results together with satisfaction of the patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents results from experimental investigations of several different atmospheric pressure plasmas applications, such as Metal Inert Gas (MIG) welding and Plasma Arc Cutting (PAC) and Welding (PAW) sources, as well as Inductively Coupled Plasma (ICP) torches. The main diagnostic tool that has been used is High Speed Imaging (HSI), often assisted by Schlieren imaging to analyse non-visible phenomena. Furthermore, starting from thermo-fluid-dynamic models developed by the University of Bologna group, such plasma processes have been studied also with new advanced models, focusing for instance on the interaction between a melting metal wire and a plasma, or considering non-equilibrium phenomena for diagnostics of plasma arcs. Additionally, the experimental diagnostic tools that have been developed for industrial thermal plasmas have been used also for the characterization of innovative low temperature atmospheric pressure non equilibrium plasmas, such as dielectric barrier discharges (DBD) and Plasma Jets. These sources are controlled by few kV voltage pulses with pulse rise time of few nanoseconds to avoid the formation of a plasma arc, with interesting applications in surface functionalization of thermosensitive materials. In order to investigate also bio-medical applications of thermal plasma, a self-developed quenching device has been connected to an ICP torch. Such device has allowed inactivation of several kinds of bacteria spread on petri dishes, by keeping the substrate temperature lower than 40 degrees, which is a strict requirement in order to allow the treatment of living tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of temperature on hydrogen assisted fatigue crack propagation are investigated in three steels in the low-to-medium strength range; a low alloy structural steel, a super duplex stainless steel, and a super ferritic stainless steel. Significant enhancement of crack growth rates is observed in hydrogen gas at atmospheric pressure in all three materials. Failure occurs via a mechanism of time independent, transgranular, cyclic cleavage over a frequency range of 0.1-5 Hz. Increasing the temperature in hydrogen up to 80°C markedly reduces the degree of embrittlement in the structural and super ferritic steels. No such effect is observed in the duplex stainless steel until the temperature exceeds 120°C. The temperature response may be understood by considering the interaction between absorbed hydrogen and micro-structural traps, which are generated in the zone of intense plastic deformation ahead of the fatigue crack tip. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four protocols involving the application of low pressures, either toward the end of frying or after frying, were investigated with the aim of lowering the oil content of potato chips. Protocol 1 involving frying at atmospheric pressure followed by a 3 min draining time constituted the control. Protocol 2 involved lowering of pressure to 13.33 kPa, 40 s before the end of frying, followed by draining for 3 min at the same pressure. Protocol 3 was the same as protocol 2, except that the pressure was lowered 3 s before the end of frying. Protocol 4 involved lowering the pressure to 13.33 kPa after the product was lifted from the oil and holding it at this value over the draining time of 3 min. Protocol 4 gave a product having the lowest oil content (37.12 g oil/100 g defatted dry matter), while protocol 2 gave the product with highest oil content (71.10 g oil/100 g defatted dry matter), followed by those obtained using protocols 1 and 3(68.48 g oil/100 g defatted dry matter and 52.50 g oil/100 g defatted dry matter, respectively). Protocol 4 was further evaluated to study the effects of draining times and vacuum applied, and compared with the control. It was noted that over the modest range of pressures investigated, there was no significant effect of the vacuum applied on the oil content of the product. This study demonstrates that the oil content of potato chips can be lowered significantly by combining atmospheric frying with draining under vacuum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper represents a study of the transient changes occurring in temperature, and moisture and oil contents during the so called “post-frying drainage”—which is the duration for which a product is held in the head space of the fryer after it is removed from the oil. Since most of the oil adhering to the product penetrates into the structure during this period, this paper examines the effects of applying vacuum during drainage (1.33 kPa) to maintain the product temperature consistently above the water saturation temperature corresponding to the prevailing pressure (11 °C), which potentially eliminates water condensation and prevents the occluded surface oil from penetrating into the product structure. Draining under vacuum significantly lowers the oil content of potato chips by 38% compared to atmospheric drainage. This phenomenon can be further confirmed by confocal laser scanning microscopy (CLSM) images, which show that the boundary between the core and the crust regions is clearly visible in the case of vacuum drainage, whereas in the case of atmospheric drainage, the oil is distributed throughout the structure. Unfortunately, the same approach did not reduce the oil content of French fries—the oil content of vacuum-drained product was found similar to the product obtained by draining under atmospheric pressure. This is because the reduction in oil content only occurs when there is net moisture evaporation from the product and the evaporation rate is sufficient to force out the oil from the product; this was clearly not the case with French fries. The CLSM images show that the oil distribution in the products drained under atmospheric pressure and vacuum was similar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400 MPa/60°C for 15 min, whereas it took nearly 8 h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3 h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3 degrees C km(-1) at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08 degrees C m(-1) at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal advections in the MABL that lead to different pressure intensification patterns across the confluence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma processing of carbon fibers (CFs) is aimed to provide better contact and adhesion between individual plies without decrease in the CF mechanical resistance. This paper deals with surface modification of CFs by an atmospheric pressure dielectric barrier discharge (DBD) for enhancing the adhesion between the CF and the polymeric matrix. The scanning electron microscopy of the treated samples revealed many small particles distributed over entire surface of the fiber. These particles are product of the fiber surface etching during the DBD treatment that removes the epoxy layer covering as-received samples. The alteration of the CF surface morphology was also confirmed by the Atomic force microscopy (AFM), which indicated that the CF roughness increased as a result of the plasma treatment. The analysis of the surface chemical composition provided by X-ray photoelectron spectroscopy showed that oxygen and nitrogen atoms are incorporated onto the surface. The polar oxygen groups formed on the surface lead to the increasing of the CF surface energy. The results of interlaminar shear strength test (short beam) of CFs/polypropylene composites demonstrated a greater shear resistance of the composites made with CFs treated by DBD than the one with untreated fibers. Both the increase in surface roughness and the surface oxidation contribute for the enhancement of CF adhesion properties. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 degrees in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our objective was to assess extrinsic influences upon childbirth. In a cohort of 1,826 days containing 17,417 childbirths among them 13,252 spontaneous labor admissions, we studied the influence of environment upon the high incidence of labor (defined by 75th percentile or higher), analyzed by logistic regression. The predictors of high labor admission included increases in outdoor temperature (odds ratio: 1.742, P = 0.045, 95%CI: 1.011 to 3.001), and decreases in atmospheric pressure (odds ratio: 1.269, P = 0.029, 95%CI: 1.055 to 1.483). In contrast, increases in tidal range were associated with a lower probability of high admission (odds ratio: 0.762, P = 0.030, 95%CI: 0.515 to 0.999). Lunar phase was not a predictor of high labor admission (P = 0.339). Using multivariate analysis, increases in temperature and decreases in atmospheric pressure predicted high labor admission, and increases of tidal range, as a measurement of the lunar gravitational force, predicted a lower probability of high admission.