936 resultados para divergence population genetics
Resumo:
Coastal lagoons are highly variable environments that may act as hotspots of genetic diversity as a consequence of their ecological role as nursery habitats of marine species with both ecological and fisheries importance. The edible cockle (Cerastoderma edule) is a commercially important shellfish resource inhabiting coastal lagoons in Europe and their fisheries management urgently needs genetic studies to design appropriate strategies to promote the recovery of exploited populations. The aim of this study was to assess the C. edule genetic diversity and population structure at a small geographic scale, inside Ria Formosa coastal lagoon (southern Portugal) using mitochondrial cytochrome oxidase I sequences in six locations. Outcomes pointed to a common pattern of high haplotype diversity and non-significant genetic structuring inside the Ria Formosa lagoon. A high level of gene flow was detected between all localities and the presence of a single stock from a genetic point of view may be considered for fisheries management purposes. The existence of a high number of haplotypes and high values of haplotype diversity of C. edule in Ria Formosa lagoon could be consistent with the hypothesis that higher genetic diversity is expected in populations occurring in coastal lagoons, suggesting that lagoons could increase standing genetic variation and an adaptive potential of lagoon populations as an ecological response to a highly variable environment.
Resumo:
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.
Resumo:
The Paraná-Paraguay basin encompasses central western Brazil, northeastern Paraguay, eastern Bolivia and northern Argentina. The Pantanal is a flooded plain with marked dry and rainy seasons that, due to its soil characteristics and low declivity, has a great water holding capacity supporting abundant fish fauna. Piaractus mesopotamicus, or pacu, endemic of the Paraná-Paraguay basin, is a migratory species economically important in fisheries and ecologically as a potential seed disperser. In this paper we employ eight microsatellite loci to assess the population structure of 120 pacu sampled inside and outside the Pantanal of Mato Grosso. Our main objective was to test the null hypothesis of panmixia and to verify if there was a different structuring pattern between the Pantanal were there were no physical barriers to fish movement and the heavily impounded Paraná and Paranapanema rivers. All loci had moderate to high levels of polymorphism, the number of alleles varied from three to 18. The average observed heterozygosity varied from 0.068 to 0.911. After the Bonferroni correction three loci remained significant for deviations from Hardy-Weinberg, and for those the frequency of null alleles was estimated. F ST and R ST pairwise comparisons detected low divergence among sampling sites, and differentiation was significant only between Paranapanema and Cuiabá and Paranapanema and Taquari. No correlation between genetic distance and the natural logarithm of the geographic distance was detected. Results indicate that for conservation purposes and for restoration programs small genetic differences detected in the Cuiabá and Paranapanema rivers should be taken in consideration.
Resumo:
The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector.
Resumo:
In this review, we analyse the impact of a population and evolutionary genetics approach on the study of insect behaviour. Our attention is focused on the model organism Drosophila melanogaster and several other insect species. In particular, we explore the relationship between rhythmic behaviours and the molecular evolution of clock and ion channel genes.
Resumo:
The evolution of reproductive division of labour and social life in social insects has lead to the emergence of several life-history traits and adaptations typical of larger organisms: social insect colonies can reach masses of several kilograms, they start reproducing only when they are several years old, and can live for decades. These features and the monopolization of reproduction by only one or few individuals in a colony should affect molecular evolution by reducing the effective population size. We tested this prediction by analysing genome-wide patterns of coding sequence polymorphism and divergence in eusocial vs. noneusocial insects based on newly generated RNA-seq data. We report very low amounts of genetic polymorphism and an elevated ratio of nonsynonymous to synonymous changes - a marker of the effective population size - in four distinct species of eusocial insects, which were more similar to vertebrates than to solitary insects regarding molecular evolutionary processes. Moreover, the ratio of nonsynonymous to synonymous substitutions was positively correlated with the level of social complexity across ant species. These results are fully consistent with the hypothesis of a reduced effective population size and an increased genetic load in eusocial insects, indicating that the evolution of social life has important consequences at both the genomic and population levels.
Resumo:
Increasing evidence suggests oceanic traits may play a key role in the genetic structuring of marine organisms. Whereas genetic breaks in the open ocean are well known in fishes and marine invertebrates, the importance of marine habitat characteristics in seabirds remains less certain. We investigated the role of oceanic transitions versus population genetic processes in driving population differentiation in a highly vagile seabird, the Cory"s shearwater, combining molecular, morphological and ecological data from 27 breeding colonies distributed across the Mediterranean (Calonectris diomedea diomedea) and the Atlantic (C. d. borealis). Genetic and biometric analyses showed a clear differentiation between Atlantic and Mediterranean Cory"s shearwaters. Ringing-recovery data indicated high site fidelity of the species, but we found some cases of dispersal among neighbouring breeding sites (<300 km) and a few long distance movements (>1000 km) within and between each basin. In agreement with this, comparison of phenotypic and genetic data revealed both current and historical dispersal events. Within each region, we did not detect any genetic substructure among archipelagos in the Atlantic, but we found a slight genetic differentiation between western and eastern breeding colonies in the Mediterranean. Accordingly, gene flow estimates suggested substantial dispersal among colonies within basins. Overall, genetic structure of the Cory"s shearwater matches main oceanographic breaks (Almería-Oran Oceanic Front and Siculo-Tunisian Strait), but spatial analyses suggest that patterns of genetic differentiation are better explained by geographic rather than oceanographic distances. In line with previous studies, genetic, phenotypic and ecological evidence supported the separation of Atlantic and Mediterranean forms, suggesting the 2 taxa should be regarded as different species.
Resumo:
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of F-ST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of F-ST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of F-ST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.
Resumo:
Speciation can be understood as a continuum occurring at different levels, from population to species. The recent molecular revolution in population genetics has opened a pathway towards understanding species evolution. At the same time, speciation patterns can be better explained by incorporating a geographic context, through the use of geographic information systems (GIS). Phaedranassa (Amaryllidaceae) is a genus restricted to one of the world’s most biodiverse hotspots, the Northern Andes. I studied seven Phaedranassa species from Ecuador. Six of these species are endemic to the country. The topographic complexity of the Andes, which creates local microhabitats ranging from moist slopes to dry valleys, might explain the patterns of Phaedranassa species differentiation. With a Bayesian individual assignment approach, I assessed the genetic structure of the genus throughout Ecuador using twelve microsatellite loci. I also used bioclimatic variables and species geographic coordinates under a Maximum Entropy algorithm to generate distribution models of the species. My results show that Phaedranassa species are genetically well-differentiated. Furthermore, with the exception of two species, all Phaedranassa showed non-overlapping distributions. Phaedranassa viridiflora and P. glauciflora were the only species in which the model predicted a broad species distribution, but genetic evidence indicates that these findings are likely an artifact of species delimitation issues. Both genetic differentiation and nonoverlapping geographic distribution suggest that allopatric divergence could be the general model of genetic differentiation. Evidence of sympatric speciation was found in two geographically and genetically distinct groups of P. viridiflora. Additionally, I report the first register of natural hybridization for the genus. The findings of this research show that the genetic differentiation of species in an intricate landscape as the Andes does not necessarily show a unique trend. Although allopatric speciation is the most common form of speciation, I found evidence of sympatric speciation and hybridization. These results show that the processes of speciation in the Andes have followed several pathways. The mixture of these processes contributes to the high biodiversity of the region.
Resumo:
Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).
Resumo:
Background: Group I introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA) of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group I introns has been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing. Results: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals representing eight localities along the distribution of PSA in the Eastern coast of South America. In order to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-splice from pre-RNA transcripts. Conclusion: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the pattern of isolation by distance. Analyses with the other markers indicated an event of demographic expansion from a population with low effective number. The different degrees of degeneration of the HEG do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific evolutionary history of a nuclear group I intron; to use nuclear, mitochondrial and chloroplast DNA for population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
Resumo:
The present study characterised the population genetic structure of Plebeia remota through mitochondrial DNA (mtDNA) analysis and evaluated evolutionary and ecological processes that may have contributed to the species current genetic scenario. Seventy feral nests were sampled representing four geographic regions (Cunha, Curitiba, Prudentopolis, and Blumenau). Fifteen composite mtDNA haplotypes were determined and a high genetic structure was detected among all populations. The current population structure may be a result of queen philopatry and vegetation shifts caused by palaeoclimatic changes and uplift of Brazilian coastal ranges. Finally, this study strongly suggests a revision of the taxonomic status of P. remota from the Prudentopolis region.
Resumo:
The koala, Phascolarctos cinereus, is a geographically widespread species endemic to Australia, with three currently recognized subspecies: P.c. adustus, P.c. cinereus, and P.c. victor. Intraspecific variation in the mitochondrial DNA (mtDNA) control region was examined in over 200 animals from 16 representative populations throughout the species' range. Eighteen different haplotypes were defined in the approximate to 860 bp mtDNA control region as determined by heteroduplex analysis/temperature gradient gel electrophoresis (HDA/TGGE). Any single population typically possessed only one or two haplotypes yielding an average within-population haplotypic diversity of 0.180 +/- 0.003, and nucleotide diversity of 0.16%. Overall, mtDNA control region sequence diversity between populations averaged 0.67%, and ranged from 0% to 1.56%. Nucleotide divergence between populations averaged 0.51%, and ranged from 0% to 1.53%. Neighbour-joining methods revealed limited phylogenetic distinction between geographically distant populations of koalas, and tentative support for a single evolutionarily significant unit (ESU). This is consistent with previous suggestions that the morphological differences formalized by subspecific taxonomy may be interpreted as clinal variation. Significant differentiation in mtDNA-haplotype frequencies between localities suggested that little gene now currently exists among populations. When combined with microsatellite analysis, which has revealed substantial differentiation among koala populations, we conclude that the appropriate short-term management unit (MU) for koalas is the local population.
Resumo:
Drosophila antonietae belongs to the Drosophila buzzatii cluster, a cactophilic group of species naturally endemic to South America. Morphological and genetic analyses indicate that its populations are the most homogenous in the cluster and that the diversity observed is mainly a result of variation within populations. Seven polymorphic microsatellite loci were described for this species and used in the present study to investigate the genetic diversity of natural populations of D. antonietae by both length and sequence variation. The study aimed to understand how homoplasy and null alleles affect inferences about the population history of this species and to obtain an accurate interpretation of population inferences where these loci could be applied. The results provide useful information on the interpretation of genetic data derived from the microsatellite loci described for D. antonietae and on evolutionary aspects of cactophilic Drosophila. Importantly, the results indicate that size homoplasy and null alleles do not represent significant problems for the population genetics analyses because the large amount of variability at microsatellite loci compensate the low frequency of these problems in the populations. (C) 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100, 573-584.
Resumo:
Phytophthora cinnamomi isolates collected from 1977 to 1986 and 1991 to 1993 in two regions in South Africa were analyzed using isozymes. A total of 135 isolates was analyzed for 14 enzymes representing 20 putative loci, of which four were polymorphic. This led to the identification of nine different multilocus isozyme genotypes. Both mating types of P. cinnamomi occurred commonly in the Cape region, whereas, predominantly, the A2 mating type occurred in the Mpumalanga region of South Africa. A2 mating type isolates could be resolved into seven multilocus isozyme genotypes, compared with only two multilocus isozyme genotypes for the A1 mating type isolates. Low levels of gene (0.115) and genotypic (2.4%) diversity and a low number of alleles per locus (1.43) were observed for the South African P. cinnamomi population. The genetic distance between the Cape and Mpumalanga P. cinnamomi populations was relatively low (D-m = 0.165), and no specific pattern in regional distribution of multilocus isozyme genotypes could be observed. The genetic distance between the ''old'' (isolated between 1977 and 1986) and ''new'' (isolated between 1991 and 1993) P. cinnamomi populations from the Cape was low (D-m = 0.164), indicating a stable population over time. Three of the nine multilocus isozyme genotypes were specific to the ''old'' population, and only one multilocus isozyme genotype was specific to the ''new'' population. Significant differences in allele frequencies, a high genetic distance (D-m = 0.581) between the Cape A1 and A2 mating type isolates, significant deviations from Hardy-Weinberg equilibrium, a low overall level of heterozygosity, and a high fixation index (0.71) all indicate that sexual reproduction occurs rarely, if at all, in the South African P. cinnamomi population.