916 resultados para distribution of over-the-counter medicines
Resumo:
The present study determined the distribution pattern of the hermit crab Loxopagurus loxochelis by a comparison of catch, depth and environmental factors at two separate bays (Caraguatatuba and Ubatuba) of Sao Paulo State, Brazil. The influence of these parameters on the distribution of males, non- ovigerous females and ovigerous females was also evaluated. Crabs were collected monthly, over a period of one year (from July/2002 to June/2003), in seven depths, from 5 to 35 m. Abiotic factors were monitored as follows: superficial and bottom salinity (psu), superficial and bottom temperature (C), organic matter content (%) and sediment composition (%). In total, 366 hermit crabs were sampled in Caraguatatuba and 126 in Ubatuba. The highest frequency of occurrence was verified at 20 m during winter (July) in Caraguatatuba and 25 m during summer (January) in Ubatuba. The highest occurrences were recorded in the regions with bottom salinities ranging from 34 to 36 psu, bottom temperatures from 18 to 24 C and, low percentages of organic matter, gravel and mud; and large proportion of sand in the substrate. There was no significant correlation between the total frequency of organisms and the environmental factors analyzed in both regions. This evidence suggests that other variables as biotic interactions can influence the pattern of distribution of L. loxochelis in the analyzed region, which is considered the limit of the northern distribution of this species.
Resumo:
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.
Resumo:
Objective: From Census data, to document the distribution of general practitioners in Australia and to estimate the number of general practitioners needed to achieve an equitable distribution accounting for community health need. Methods: Data on location of general practitioners, population size and crude mortality by statistical division (SD) were obtained from the Australian Bureau of Statistics. The number of patients per general practitioner by SD was calculated and plotted. Using crude mortality to estimate community health need, a ratio of the number of general practitioners per person:mortality was calculated for all Australia and for each SD (the Robin Hood Index). From this, the number of general practitioners needed to achieve equity was calculated. Results: In all, 26,290 general practitioners were identified in 57 SDs. The mean number of people per general practitioner is 707, ranging from 551 to 1887. Capital city SDs have most favourable ratios. The Robin Hood Index for Australia is 1, and ranges from 0.32 (relatively under-served) to 2.46 (relatively over-served). Twelve SDs (21%) including all capital cities and 65% of all Australians, have a Robin Hood Index > 1. To achieve equity per capita 2489 more general practitioners (10% of the current workforce) are needed. To achieve equity by the Robin Hood Index 3351 (13% of the current workforce) are needed. Conclusions: The distribution of general practitioners in Australia is skewed. Nonmetropolitan areas are relatively underserved. Census data and the Robin Hood Index could provide a simple means of identifying areas of need in Australia.
Resumo:
Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We consider the statistical properties of the local density of states of a one-dimensional Dirac equation in the presence of various types of disorder with Gaussian white-noise distribution. It is shown how either the replica trick or supersymmetry can be used to calculate exactly all the moments of the local density of states.' Careful attention is paid to how the results change if the local density of states is averaged over atomic length scales. For both the replica trick and supersymmetry the problem is reduced to finding the ground state of a zero-dimensional Hamiltonian which is written solely in terms of a pair of coupled spins which are elements of u(1, 1). This ground state is explicitly found for the particular case of the Dirac equation corresponding to an infinite metallic quantum wire with a single conduction channel. The calculated moments of the local density of states agree with those found previously by Al'tshuler and Prigodin [Sov. Phys. JETP 68 (1989) 198] using a technique based on recursion relations for Feynman diagrams. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The principal malaria vector in the Philippines, Anopheles flavirostris (Ludlow) (Diptera: Culicidae), is regarded as 'shade-loving' for its breeding sites, i.e. larval habitats. This long-standing belief, based on circumstantial observations rather than ecological analysis, has guided larval control methods such as 'stream-clearing' or the removal of riparian vegetation, to reduce the local abundance of An. flavirostris . We measured the distribution and abundance of An. flavirostris larvae in relation to canopy vegetation cover along a stream in Quezon Province, the Philippines. Estimates of canopy openness and light measurements were obtained by an approximation method that used simplified assumptions about the sun, and by hemispherical photographs analysed using the program hemiphot(C) . The location of larvae, shade and other landscape features was incorporated into a geographical information system (GIS) analysis. Early larval instars of An. flavirostris were found to be clustered and more often present in shadier sites, whereas abundance was higher in sunnier sites. For later instars, distribution was more evenly dispersed and only weakly related to shade. The best predictor of late-instar larvae was the density of early instars. Distribution and abundance of larvae were related over time (24 days). This pattern indicates favoured areas for oviposition and adult emergence, and may be predictable. Canopy measurements by the approximation method correlated better with larval abundance than hemispherical photography, being economical and practical for field use. Whereas shade or shade-related factors apparently have effects on larval distribution of An. flavirostris , they do not explain it completely. Until more is known about the bionomics of this vector and the efficacy and environmental effects of stream-clearing, we recommend caution in the use of this larval control method.
Resumo:
XV European Congress of Ichthyology, Porto, Portugal, 7 Sep - 11 Sep, 2015.
Resumo:
OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion.
Resumo:
Introduction Vector seasonality knowledge is important for monitoring and controlling of vector-borne diseases. Lutzomyia longipalpis (Lu. longipalpis) is the main vector of Leishmania (Leishmania) infantum Nicolle, 1908, which is the causative agent of visceral leishmaniasis in the Americas. Methods Lu. longipalpis was monitored for 3 consecutive nights each month using light traps from the Centers for Disease Control in the peridomiciles and intradomiciles of 18 residences from January 2005 to December 2012 in the urban area of Dracena, a medium-sized city located in the western region of São Paulo, Brazil. Results A total of 54,820 Lu. longipalpis specimens were collected, and the proportion of positive samples was significantly higher in the peridomiciles than in the intradomiciles (p<0.05) in all 8 years of the study, except for 2005. The vector was present in all study years in the 9 sub-regions of the city, and the male/female ratio ranged from 3.19 to 4.26. The greatest vector abundance occurred in the first semester and peaked in March, confirming its seasonality. Conclusions The maintenance of this high abundance over an 8-year surveillance period demonstrates the vector adaptation to the urban conditions of the city. These characteristics present a major challenge for preventing human and canine contact with the vector and, consequently, controlling the spread of disease.
Resumo:
Miniature light traps used to collect Phlebotominae in a focus of dermal leishmaniasis in the eastern part of the State of Minas Gerais, Brazil. Over a period of seven months, the other Diptera captured in 179 light trap samples were identified to family level. The traps were placed in eight localities which constituted three different biotopes: three woodland aresas, cultivated land, and a peridomestic site. A comparison is made between the totals of Dipeterans collected in each biotope, the total numbers of families collected in each biotope and the estimated indices of diversity. Dendograms representing the degrees of association between families of Diptera in different biotopes are presented. Some families of Diptera are uniformly distributed throughout the study area; a few families seem to have become adapted to areas where human activity has induced the greatest ecological changes. The impact between Dipterans and human well-being is discussed. The availabel evidence indicates that transmission of dermal leishmaniasis does not occur in areas where sand flies can be captured in greatest densities.
Resumo:
Traditionally, it is assumed that the population size of cities in a country follows a Pareto distribution. This assumption is typically supported by nding evidence of Zipf's Law. Recent studies question this nding, highlighting that, while the Pareto distribution may t reasonably well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the log-normal distribution may apply when all cities are considered. Moreover, conclusions may be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity to the choice of truncation point. In particular, we look at US Census data and apply a recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test where we consider each possible truncation point of the distribution of all cities. Results con rm the sensitivity of results to the truncation point. Moreover, repeating the analysis over simulated data con rms the di culty of distinguishing a Pareto tail from the tail of a log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.
Resumo:
Biological invasions and land-use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land-use is a key driver of alien species invasions, it is often assumed that land-use is constant in time. Here we combine historical and present day information, to evaluate whether land-use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present-day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present-day data on land-uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land-use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land-use changes predicted invasion dynamics better than models assuming constant land-use over the last 50 years. Scenarios of future land-use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land-use is not constant in time: land-use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land-use class may vary in time. An integration of land-use changes in studies of biological invasions can help to improve management strategies.
Resumo:
The future dispersal of onchocerciasis in Ecuador is dependent on the distribution of cytotypes of the vector species complex Simulium exiguum. Over the last 14 years, collections of larvae have been made from over 25 rivers, between 80-1600 m altitude, from various sites on both sides of the Andes. Analysis of larval polytene chromosomes was used to determine the distributions of each cytotype. On the western side of the Andes, the Cayapa cytotype (the only cytotype directly incriminated as a vector) has a distribution from Santo Domingo de los Colorados northwards. The Quevedo and Bucay cytotypes occur from Santo Domingo de los Colorados southwards. On the eastern side of the Andes, the Aguarico cytotype occurs in the Rio Aguarico and a new cytotype is present in the tributaries of the Rio Napo. Whether the disease will spread south of Santo Domingo and on the eastern side of the Andes depends on vector capacity of the cytotypes and the dispersal patterns of individuals infected with onchocerciasis. At present the Aguarico, Bucay and Quevedo cytotypes are known to be efficient hosts, but their biting preferences and biting densities have not yet been evaluated
Resumo:
The monocarboxylate transporter MCT2 belongs to a large family of membrane proteins involved in the transport of lactate, pyruvate and ketone bodies. Although its expression in rodent brain has been well documented, the presence of MCT2 in the human brain has been questioned on the basis of low mRNA abundance. In this study, the distribution of the monocarboxylate transporter MCT2 has been investigated in the cortex of normal adult human brain using an immunohistochemical approach. Widespread neuropil staining in all cortical layers was observed by light microscopy. Such a distribution was very similar in three different cortical areas investigated. At the cellular level, the expression of MCT2 could be observed in a large number of neurons, in fibers both in grey and white matter, as well as in some astrocytes, mostly localized in layer I and in the white matter. Double staining experiments combined with confocal microscopy confirmed the neuronal expression but also suggested a preferential postsynaptic localization of synaptic MCT2 expression. A few astrocytes in the grey matter appeared to exhibit MCT2 labelling but at low levels. Electron microscopy revealed strong MCT2 expression at asymmetric synapses in the postsynaptic density and also within the spine head but not in the presynaptic terminal. These data not only demonstrate neuronal MCT2 expression in human, but since a portion of it exhibits a distinct synaptic localization, it further supports a putative role for MCT2 in adjustment of energy supply to levels of activity.