959 resultados para dissipation in field theory
Resumo:
This is a short nontechnical introduction to applications of the Quantum Field Theory methods to graphene. We derive the Dirac model from the tight binding model and describe calculations of the polarization operator (conductivity). Later on, we use this quantity to describe the Quantum Hall Effect, light absorption by graphene, the Faraday effect, and the Casimir interaction.
Resumo:
We study, in a d-dimensional space-time, the nonanalyticity of the thermal free energy in the scalar phi(4) theory as well as in QED. We find that the infrared divergent contributions induce, when d is even, a nonanalyticity in the coupling alpha of the form (alpha)((d-1)/2) whereas when d is odd the nonanalyticity is only logarithmic.
Resumo:
We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.
Resumo:
Using the elements of the so-called KBc gamma subalgebra, we study a class of analytic solutions depending on a single function F(K) in the modified cubic superstring field theory. We compute the energy associated to these solutions and show that the result can be expressed in terms of a contour integral. For a particular choice of the function F(K), we show that the energy is given by integer multiples of a single D-brane tension.
Resumo:
In questo lavoro abbiamo studiato la presenza di correzioni, dette unusuali, agli stati eccitati delle teorie conformi. Inizialmente abbiamo brevemente descritto l'approccio di Calabrese e Cardy all'entropia di entanglement nei sistemi unidimensionali al punto critico. Questo approccio permette di ottenere la famosa ed universale divergenza logaritmica di questa quantità. Oltre a questo andamento logaritmico son presenti correzioni, che dipendono dalla geometria su cui si basa l'approccio di Calabrese e Cardy, il cui particolare scaling è noto ed è stato osservato in moltissimi lavori in letteratura. Questo scaling è dovuto alla rottura locale della simmetria conforme, che è una conseguenza della criticità del sistema, intorno a particolari punti detti branch points usati nell'approccio di Calabrese e Cardy. In questo lavoro abbiamo dimostrato che le correzioni all'entropia di entanglement degli stati eccitati della teoria conforme, che può anch'essa essere calcolata tramite l'approccio di Calabrese e Cardy, hanno lo stesso scaling di quelle osservate negli stati fondamentali. I nostri risultati teorici sono stati poi perfettamente confermati dei calcoli numerici che abbiamo eseguito sugli stati eccitati del modello XX. Sono stati inoltre usati risultati già noti per lo stato fondamentale del medesimo modello per poter studiare la forma delle correzioni dei suoi stati eccitati. Questo studio ha portato alla conclusione che la forma delle correzioni nei due differenti casi è la medesima a meno di una funzione universale.
Resumo:
BCJ-relations have a series of important consequences in Quantum FieldrnTheory and in Gravity. In QFT, one can use BCJ-relations to reduce thernnumber of independent colour-ordered partial amplitudes and to relate nonplanarrnand planar diagrams in loop calculations. In addition, one can usernBCJ-numerators to construct gravity scattering amplitudes through a squaringrn procedure. For these reasons, it is important to nd a prescription tornobtain BCJ-numerators without requiring a diagram by diagram approach.rnIn this thesis, after introducing some basic concepts needed for the discussion,rnI will examine the existing diagrammatic prescriptions to obtainrnBCJ-numerators. Subsequently, I will present an algorithm to construct anrneective Yang-Mills Lagrangian which automatically produces kinematic numeratorsrnsatisfying BCJ-relations. A discussion on the kinematic algebrarnfound through scattering equations will then be presented as a way to xrnnon-uniqueness problems in the algorithm.
Resumo:
Some of the most interesting phenomena that arise from the developments of the modern physics are surely vacuum fluctuations. They appear in different branches of physics, such as Quantum Field Theory, Cosmology, Condensed Matter Physics, Atomic and Molecular Physics, and also in Mathematical Physics. One of the most important of these vacuum fluctuations, sometimes called "zero-point energy", as well as one of the easiest quantum effect to detect, is the so-called Casimir effect. The purposes of this thesis are: - To propose a simple retarded approach for dynamical Casimir effect, thus a description of this vacuum effect when we have moving boundaries. - To describe the behaviour of the force acting on a boundary, due to its self-interaction with the vacuum.
Resumo:
In questa tesi vengono presentati i piu recenti risultati relativi all'estensione della teoria dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in letteratura per giungere ad una loro risoluzione. Dopo un'introduzione alle strutture matematiche di base, varieta Lorentziane e operatori Green-iperbolici, viene definita l'algebra delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funtore dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle *-algebre, lo stesso schema viene proposto per le teorie di campo bosoniche, purche definite da un operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo studio delle supervarieta e alla definizione delle geometrie di background per le super teorie di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno spazio-tempo ridotto, si introduce la categoria delle strutture di super-Cartan (ghsCart) il cui spazio-tempo ridotto e globalmente iperbolico. Quindi, si mostra, in breve, come e possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super *-algebre e si conclude presentando l'applicazione dei risultati esposti al caso delle strutture di super-Cartan in dimensione 2|2.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a “relativistic” spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.