876 resultados para discrepancy
Resumo:
Ultra-high-energy cosmic rays (UHECRs), with energies above similar to 6 x 10(19) eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.
Resumo:
The common practice of reconciliation is based on definition of the mine call factor (MCF) and its application to resource or grade control estimates. The MCF expresses the difference, a ratio or percentage, between the predicted grade and the grade reported by the plant. Therefore, its application allows to correct future estimates. This practice is named reactive reconciliation. However the use of generic factors that are applied across differing time scales and material types often disguises the causes of the error responsible for the discrepancy. The root causes of any given variance can only be identified by analyzing the information behind any variance and, then, making changes to methodologies and processes. This practice is named prognostication, or proactive reconciliation, an iterative process resulting in constant recalibration of the inputs and the calculations. The prognostication allows personnel to adjust processes so that results align within acceptable tolerance ranges, and not only to correct model estimates. This study analyses the reconciliation practices performed at a gold mine in Brazil and suggests a new sampling protocol, based on prognostication concepts.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
We derive an analytic expression for the matric flux potential (M) for van Genuchten-Mualem (VGM) type soils which can also be written in terms of a converging infinite series. Considering the first four terms of this series, the accuracy of the approximation was verified by comparing it to values of M estimated by numerical finite difference integration. Using values of the parameters for three soils from different texture classes, the proposed four-term approximation showed an almost perfect match with the numerical solution, except for effective saturations higher than 0.9. Including more terms reduced the discrepancy but also increased the complexity of the equation. The four-term equation can be used for most applications. Cases with special interest in nearly saturated soils should include more terms from the infinite series. A transpiration reduction function for use with the VGM equations is derived by combining the derived expression for M with a root water extraction model. The shape of the resulting reduction function and its dependency on the derivative of the soil hydraulic diffusivity D with respect to the soil water content theta is discussed. Positive and negative values of dD/d theta yield concave and convex or S-shaped reduction functions, respectively. On the basis of three data sets, the hydraulic properties of virtually all soils yield concave reduction curves. Such curves based solely on soil hydraulic properties do not account for the complex interactions between shoot growth, root growth, and water availability.
Resumo:
Although the effect of salinity on plant growth has been the focus of a substantive research effort, much of this research has failed to adequately separate the various growth limiting aspects of salinity; thus the results are confounded by multiple factors. Eight perennial grass species were grown in a sand culture system dominated by NaCl (electrical conductivities (ECs) between 1.4 and 38 dS m 1), with sufficient Ca added to each treatment to ensure that Na-induced Ca deficiency did not reduce growth. Of the eight perennial grass species examined, Chloris gayana cv. Pioneer (Rhodes grass) was the most salt tolerant species, whilst in comparison, Chrysopogon zizanioides cv. Monto (vetiver) was of only moderate tolerance. However, observed salinity tolerances tended to be lower than those expected from published values based on the threshold salinity model (bent stick model). This discrepancy may be due in part to differences in the evapotranspirational demand between studies; an increase in demand accelerating the accumulation of Na in the shoots and hence decreasing apparent salinity tolerance. It was also observed that the use of a non-saline growth period to allow seed germination and establishment results in the overestimation of vegetative salinity tolerance if not taken into consideration. This is particularly true for species of low salt tolerance due to their comparatively rapid growth in the non-saline medium compared to that at full salinity.
Resumo:
This paper reports a study of sources of information about HIV/AIDS and trust of the sources among heterosexuals in 1989 (113 females and 91 males) and 1994 (185 females and 66 males). We also examined whether perceived personal risk of HIV infection was predicted by sources of information about HIV/AIDS, trust of the sources, how informed about AIDS people believed they were, and perceived risk of infection to others, as well as whether there was a relationship between perceived personal risk and safe sex behaviour Participants received most of their information about AIDS/HIV from magazines, newspapers, and television, but placed most trust on sources such as doctors and HIV/AIDS organisations. Perceived personal risk was influenced most by perceived risk to friends and to people with the same sexual practices. In the 1994 sample, perceived personal risk was correlated with the amount of condom use among participants with sexual experience. These results indicate ther has been. relative stability across a five-year period. They also point to the continuing discrepancy among young heterosexuals between the most-used and most-trusted sources of information, as well as to the importance of peer influence on perceptions of personal risk of HIV infection.
Resumo:
Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration-time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in booth experimental and clinical situations.
Resumo:
The influence of initial perturbation geometry and material propel-ties on final fold geometry has been investigated using finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different strain rates employed in the two previous studies (i.e. 10(-6) s(-1) in the FLAC models and 10(-14) s(-1) in the MARC models). As a result, different parts of the elasto-viscous rheological field were bring investigated. For the same material properties, strain rate and boundary conditions, the present results using the two different codes are consistent. A transition in Folding behaviour, from a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elastoviscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the competent layer (on the order of GPa), which is improbable under natural conditions. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Estimating energy requirements is necessary in clinical practice when indirect calorimetry is impractical. This paper systematically reviews current methods for estimating energy requirements. Conclusions include: there is discrepancy between the characteristics of populations upon which predictive equations are based and current populations; tools are not well understood, and patient care can be compromised by inappropriate application of the tools. Data comparing tools and methods are presented and issues for practitioners are discussed. (C) 2003 International Life Sciences Institute.
Resumo:
The applicability of image calibration to like-values in mapping water quality parameters from multitemporal images is explored, Six sets of water samples were collected at satellite overpasses over Moreton Bay, Brisbane, Australia. Analysis of these samples reveals that waters in this shallow bay are mostly TSS-dominated, even though they are occasionally dominated by chlorophyll as well. Three of the images were calibrated to a reference image based on invariant targets. Predictive models constructed from the reference image were applied to estimating total suspended sediment (TSS) and Secchi depth from another image at a discrepancy of around 35 percent. Application of the predictive model for TSS concentration to another image acquired at a time of different water types resulted in a discrepancy of 152 percent. Therefore, image calibration to like-values could be used to reliably map certain water quality parameters from multitemporal TM images so long as the water type under study remains unchanged. This method is limited in that the mapped results could be rather inaccurate if the water type under study has changed considerably. Thus, the approach needs to be refined in shallow water from multitemporal satellite imagery.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
This study uses a molecular-dating approach to test hypotheses about the biogeography of Nothofagus. The molecular modelling suggests that the present-day subgenera and species date from a radiation that most likely commenced between 55 and 40 Myr ago. This rules out the possibility of a reconciled all-vicariance hypothesis for the biogeography of extant Nothofagus. However, the molecular dates for divergences between Australasian and South American taxa are consistent with the rifting of Australia and South America from Antarctica. The molecular dates further suggest a dispersal of subgenera Lophozonia and Fuscospora between Australia and New Zealand after the onset of the Antarctic Circumpolar Current and west wind drift. It appears likely that the New Caledonian lineage of subgenus Brassospora diverged from the New Guinean lineage elsewhere, prior to colonizing New Caledonia. The molecular approach strongly supports fossil-based estimates that Nothofagus diverged from the rest of Fagales more than 84 Myr ago. However, the mid-Cenozoic estimate for the diversification of the four extant subgenera conflicts with the palynological interpretation because pollen fossils, attributed to all four extant subgenera, were widespread across the Weddellian province of Gondwana about 71 Myr ago. The discrepancy between the pollen and molecular dates exists even when confidence intervals from several sources of error are taken into account. In contrast, the molecular age estimates are consistent with macrofossil dates. The incongruence between pollen fossils and molecular dates could be resolved if the early pollen types represent extinct lineages, with similar types later evolving independently in the extant lineages.
Resumo:
Objectives To validate the previously proposed classification criteria for Henoch-Schonlein purpura (HSP), childhood polyarteritis nodosa (c-PAN), c-Wegener granulomatosis (c-WG) and c-Takayasu arteritis (c-TA). Methods Step 1: retrospective/prospective webdata collection for children with HSP, c-PAN, c-WG and c-TA with age at diagnosis <= 18 years. Step 2: blinded classification by consensus panel of a representative sample of 280 cases. Step 3: statistical (sensitivity, specificity, area under the curve and.-agreement) and nominal group technique consensus evaluations. Results 827 patients with HSP, 150 with c-PAN, 60 with c-WG, 87 with c-TA and 52 with c-other were compared with each other. A patient was classified as HSP in the presence of purpura or petechiae (mandatory) with lower limb predominance plus one of four criteria: (1) abdominal pain; (2) histopathology (IgA); (3) arthritis or arthralgia; (4) renal involvement. Classification of c-PAN required a systemic inflammatory disease with evidence of necrotising vasculitis OR angiographic abnormalities of medium-/small-sized arteries (mandatory criterion) plus one of five criteria: (1) skin involvement; (2) myalgia/muscle tenderness; (3) hypertension; (4) peripheral neuropathy; (5) renal involvement. Classification of c-WG required three of six criteria: (1) histopathological evidence of granulomatous inflammation; (2) upper airway involvement; (3) laryngo-tracheo-bronchial involvement; (4) pulmonary involvement (x-ray/CT); (5) antineutrophilic cytoplasmic antibody positivity; (6) renal involvement. Classification of c-TA required typical angiographic abnormalities of the aorta or its main branches and pulmonary arteries (mandatory criterion) plus one of five criteria: (1) pulse deficit or claudication; (2) blood pressure discrepancy in any limb; (3) bruits; (4) hypertension; (5) elevated acute phase reactant. Conclusion European League Against Rheumatism/Paediatric Rheumatology International Trials Organisation/Paediatric Rheumatology European Society propose validated classification criteria for HSP, c-PAN, c-WG and c-TA with high sensitivity/specificity.
Resumo:
We measured bone mineral content (BMC) and estimated calcium accretion in children to provide insight into dietary calcium requirements during growth. Anthropometric measurements were done semiannually and whole-body BMC was measured annually by dual-energy X-ray absorptiometry for 4 y in 228 children (471 scans in 113 boys and 507 scans in 115,girls). Mean values for BMC, skeletal area, and height were calculated for 1-y age groups from 9.5 to 19.5 y of age. Cross-sectional analysis of the pooled data gave peak height velocity and peak BMC velocity (PBMCV) and the ages at which these occurred (13.3 y in boys and 11.4 y in girls). PBMCV did not peak until 1.2 y after peak height velocity in boys and 1.6 y after peak height velocity in girls. Within 3 y on either side of PBMCV, boys had consistently higher BMC and BMC velocity compared with girls and the discrepancy increased steadily through puberty. Three years before PBMCV, BMC Values in girls were 69% of those in boys; 3 y after peak height velocity this proportion fell to 51%. PBMCV was 320 g/y in boys and 240 g/y in girls. Under the assumption that bone mineral is 32.2% calcium, these values corresponded to a daily calcium retention of 282 mg in boys and 212 mg in girls. Individual Values could be much greater. In one boy in a group of six subjects for whom there were enough data for individual analysis through puberty, PBMCV was 555 g Ca/y or 490 mg Ca/d. Such high skeletal demands for calcium require large dietary calcium intakes and such requirements may not be met immediately in some children.