890 resultados para dinuclear system model
Resumo:
Within the dinuclear system model, the effects of the relative orientations of interacting deformed nuclei on the interaction potential energy surfaces, the evaporation residue cross sections of some cold fusion reactions leading to superheavy elements are investigated. The competition between fusion and quasifission is studied to show the effect of the orientation. It turns out that the belly-belly orientation is in favor of the production of superheavy nuclei, because in the case a barrier has suppressed the quasifission and thus helped fusion.
Resumo:
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.
Resumo:
Within the framework of the dinuclear system model, the production of superheavy element Z = 117 in possible projectile-target combinations is analysed systematically. The calculated results show that the production cross sections are strongly dependent on the reaction systems. Optimal combinations, corresponding excitation energies and evaporation channels are proposed, such as the isotopes Bk-248,Bk-249 in Ca-48 induced reactions in 3n evaporation channels and the reactions Sc-45+Cm-246,Cm-248 in 3n and 4n channels, and the system V-51+Pu-244 in 3n channel.
Resumo:
The dinuclear system model has been further developed by introducing the barrier distribution function method in the process of heavy-ion capture and fusion to synthesize superheavy nuclei. The capture of two colliding nuclei, formation and de-excitation process of compound nucleus are decribed by using empirical coupled channel model, solving master equation numerically and statistical evaporation model, respectively. Within the framework of the dinuclear system model, the fusion-evaporation excitation functions of the systems Ca-48(Am-243, 3n-5n) (288-286)115 and Ca-48(Cm-248, 3n-5n)(293-291)116 are calculated, which are used for synthesizing new superheavy nuclei at Dubna in recent years. Isotopic dependence of production cross sections with double magic nucleus Ca-48 bombarding actinide targets U, Np, Pu, Am, Cm to synthesize superheavy nuclei with charged numbers Z=112-116 is analyzed systematically. Based on these analysis, the optimal projectile-target combination and the optimal excitation energy are proposed. It is shown that shell correction energy and neutron separation energy will play an important role on the isotopic dependence of production cross sections of superheavy nuclei.
Resumo:
Within the framework of a dinuclear system model, a new master equation is constructed and solved, which includes the relative distance of nuclei as a new dynamical variable in addition to the mass asymmetry variable so that the nucleon transfer, which leads to fusion and the evolution of the relative distance, which leads to quasifission (QF) are treated simultaneously in a consistent way. The QF mass yields and evaporation residual cross sections to produce superheavy nuclei are systematically investigated under this framework. The results fit the experimental data well. It is shown that the Kramers formula gives results of QF, which agree with those by our diffusion treatment, only if the QF barrier is high enough. Otherwise some large discrepancies occur.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
The contemporary world is crowded of large, interdisciplinary, complex systems made of other systems, personnel, hardware, software, information, processes, and facilities. The Systems Engineering (SE) field proposes an integrated holistic approach to tackle these socio-technical systems that is crucial to take proper account of their multifaceted nature and numerous interrelationships, providing the means to enable their successful realization. Model-Based Systems Engineering (MBSE) is an emerging paradigm in the SE field and can be described as the formalized application of modelling principles, methods, languages, and tools to the entire lifecycle of those systems, enhancing communications and knowledge capture, shared understanding, improved design precision and integrity, better development traceability, and reduced development risks. This thesis is devoted to the application of the novel MBSE paradigm to the Urban Traffic & Environment domain. The proposed system, the GUILTE (Guiding Urban Intelligent Traffic & Environment), deals with a present-day real challenging problem “at the agenda” of world leaders, national governors, local authorities, research agencies, academia, and general public. The main purposes of the system are to provide an integrated development framework for the municipalities, and to support the (short-time and real-time) operations of the urban traffic through Intelligent Transportation Systems, highlighting two fundamental aspects: the evaluation of the related environmental impacts (in particular, the air pollution and the noise), and the dissemination of information to the citizens, endorsing their involvement and participation. These objectives are related with the high-level complex challenge of developing sustainable urban transportation networks. The development process of the GUILTE system is supported by a new methodology, the LITHE (Agile Systems Modelling Engineering), which aims to lightening the complexity and burdensome of the existing methodologies by emphasizing agile principles such as continuous communication, feedback, stakeholders involvement, short iterations and rapid response. These principles are accomplished through a universal and intuitive SE process, the SIMILAR process model (which was redefined at the light of the modern international standards), a lean MBSE method, and a coherent System Model developed through the benchmark graphical modeling languages SysML and OPDs/OPL. The main contributions of the work are, in their essence, models and can be settled as: a revised process model for the SE field, an agile methodology for MBSE development environments, a graphical tool to support the proposed methodology, and a System Model for the GUILTE system. The comprehensive literature reviews provided for the main scientific field of this research (SE/MBSE) and for the application domain (Traffic & Environment) can also be seen as a relevant contribution.
Resumo:
Purpose: The goal of this conceptual paper is to provide tools to help maximise the value delivered by infrastructure projects, by developing methods to increase adoption of innovative products during construction. Methods: The role of knowledge flows in determining innovation adoption rates is conceptually examined. A promising new approach is developed. Open innovation system theory is extended, by reviewing the role of three frameworks: (1) knowledge intermediaries, (2) absorptive capacity and (3) governance arrangements. Originality: We develop a novel open innovation system model to guide further research in the area of adoption of innovation on infrastructure projects. The open innovation system model currently lacks definition of core concepts, especially with regard to the impact of different degrees and types of openness. The three frameworks address this issue and add substance to the open innovation system model, addressing widespread criticism that it is underdeveloped. The novelty of our model is in the combination of the three frameworks to explore the system. These frameworks promise new insights into system dynamics and facilitate the development of new methods to optimise the diffusion of innovation. Practical Implications: The framework will help to reveal gaps in knowledge flows that impede the uptake of innovations. In the past, identifying these gaps has been difficult given the lack of nuance in existing theory. The knowledge maps proposed will enable informed policy advice to effectively harness the power of knowledge networks, increase innovation diffusion and improve the performance of infrastructure projects. The models developed in this paper will be used in planned empirical research into innovation on large scale infrastructure projects in the Australian built environment.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
This paper proposes an efficient and online learning control system that uses the successful Model Predictive Control (MPC) method in a model based locally weighted learning framework. The new approach named Locally Weighted Learning Model Predictive Control (LWL-MPC) has been proposed as a solution to learn to control complex and nonlinear Elastic Joint Robots (EJR). Elastic Joint Robots are generally difficult to learn to control due to their elastic properties preventing standard model learning techniques from being used, such as learning computed torque control. This paper demonstrates the capability of LWL-MPC to perform online and incremental learning while controlling the joint positions of a real three Degree of Freedom (DoF) EJR. An experiment on a real EJR is presented and LWL-MPC is shown to successfully learn to control the system to follow two different figure of eight trajectories.
Resumo:
This paper presents an approach for identifying the limit states of resilience in a water supply system when influenced by different types of pressure (disturbing) forces. Understanding of systemic resilience facilitates identification of the trigger points for early managerial action to avoid further loss of ability to provide satisfactory service availability when the ability to supply water is under pressure. The approach proposed here is to illustrate the usefulness of a surrogate measure of resilience depicted in a three dimensional space encompassing independent pressure factors. That enables visualisation of the transition of the system-state (resilience) between high to low resilience regions and acts as an early warning trigger for decision-making. The necessity of a surrogate measure arises as a means of linking resilience to the identified pressures as resilience cannot be measured directly. The basis for identifying the resilience surrogate and exploring the interconnected relationships within the complete system, is derived from a meta-system model consisting of three nested sub-systems representing the water catchment and reservoir; treatment plant; and the distribution system and end-users. This approach can be used as a framework for assessing levels of resilience in different infrastructure systems by identifying a surrogate measure and its relationship to relevant pressures acting on the system.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.
Resumo:
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Resumo:
The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.