981 resultados para digital fabrication


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how a living cell behaves has become a very important topic in today’s research field. Hence, different sensors and testing devices have been designed to test the mechanical properties of these living cells. This thesis presents a method of micro-fabricating a bio-MEMS based force sensor which is used to measure the force response of living cells. Initially, the basic concepts of MEMS have been discussed and the different micro-fabrication techniques used to manufacture various MEMS devices have been described. There have been many MEMS based devices manufactured and employed for testing many nano-materials and bio-materials. Each of the MEMS based devices described in this thesis use a novel concept of testing the specimens. The different specimens tested are nano-tubes, nano-wires, thin film membranes and biological living cells. Hence, these different devices used for material testing and cell mechanics have been explained. The micro-fabrication techniques used to fabricate this force sensor has been described and the experiments preformed to successfully characterize each step in the fabrication have been explained. The fabrication of this force sensor is based on the facilities available at Michigan Technological University. There are some interesting and uncommon concepts in MEMS which have been observed during this fabrication. These concepts in MEMS which have been observed are shown in multiple SEM images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proposed work aims to facilitate the development of a microfluidic platform for the production of advanced microcapsules containing active agents which can be the functional constituents of self-healing composites. The creation of such microcapsules is enabled by the unique flow characteristics within microchannels including precise control over shear and interfacial forces for droplet creation and manipulation as well as the ability to form a solid shell either chemically or via the addition of thermal or irradiative energy. Microchannel design and a study of the fluid dynamics and mechanisms for shell creation are undertaken in order to establish a fabrication approach capable of producing healing-agent-containing microcapsules. An in-depth study of the process parameters has been undertaken in order to elucidate the advantages of this production technique including precise control of size (i.e., monodispersity) and surface morphology of the microcapsules. This project also aims to aid the optimization of the mechanical properties as well as healing performance of self-healing composites by studying the effects of the advantageous properties of the as-produced microcapsules. Scale-up of the microfluidic fabrication using parallel devices on a single chip as well as on-chip microcapsule production and shape control will also be investigated. It will be demonstrated that microfluidic fabrication is a versatile approach for the efficient creation of functional microcapsules allowing for superior design of self-healing composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decades, tremendous research interests have been attracted to investigate nanoparticles due to their promising catalytic, magnetic, and optical properties. In this thesis, two novel methods of nanoparticle fabrication were introduced and the basic formation mechanisms were studied. Metal nanoparticles and polyurethane nanoparticles were separately fabricated by a short-distance sputter deposition technique and a reactive ion etching process. First, a sputter deposition method with a very short target-substrate distance is found to be able to generate metal nanoparticles on the glass substrate inside a RIE chamber. The distribution and morphology of nanoparticles are affected by the distance, the ion concentration and the process time. Densely-distributed nanoparticles of various compositions are deposited on the substrate surface when the target-substrate distance is smaller than 130mm. It is much less than the atoms’ mean free path, which is the threshold in previous research for nanoparticles’ formation. Island structures are formed when the distance is increased to 510mm, indicating the tendency to form continuous thin film. The trend is different from previously-reported sputtering method for nanoparticle fabrication, where longer distance between the target and the substrate facilitates the formation of nanoparticle. A mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results. Secondly, in polyurethane nanoparticles’ fabrication, a mechanism is put forward based on the microphase separation phenomenon in block copolymer thin film. The synthesized polymers have formed dispersed and continuous phases because of the different properties between segments. With harder mechanical property, the dispersed phase is remained after RIE process while the continuous phase is etched away, leading to the formation of nanoparticles on the substrate. The nanoparticles distribution is found to be affected by the heating effect, the process time and the plasma power. Superhydrophilic property is found on samples with these two types of nanoparticles. The relationship between the nanostructure and the hydrophilicity is studied for further potential applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic nanocups provide a unique method for redirecting scattered light by creating magnetic plasmon responses at optical frequencies. Despite considerable development of nanocup fabrication processes, simultaneously achieving accurate control over the placement, orientation, and geometry of nanocups has remained a significant challenge. Here we present a technique for fabricating large, periodically ordered arrays of uniformly oriented three-dimensional gold nanocups for manipulating light at subwavelength scales. Nanoimprint lithography, soft lithography, and shadow evaporation were used to fabricate nanocups onto the tips of polydimethylsiloxane nanopillars with precise control over the shapes and optical properties of asymmetric nanocups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz surface acoustic wave filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due to an electrical impedance mismatch at the SAW filter and sensor, energy is reflected at the sensor load and reradiated from the integrated antenna. By selecting sensors that change electrical impedance based on environmental conditions, the sensor state can be inferred through measurement of the reflected energy profile. Testing has shown that a calibrated system utilizing this type of sensor tag can detect distinct light levels wireless and passively. The authors also demonstrate simultaneous operation of two tags with different center passbands that detects light. Ranging tests show that the sensor tags can operate at a distance of at least 3.6 m.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The Short Communication presents a clinical case in which a novel procedure--the "Individualized Scanbody Technique" (IST)--was applied, starting with an intraoral digital impression and using CAD/CAM process for fabrication of ceramic reconstructions in bone level implants. MATERIAL AND METHODS A standardized scanbody was individually modified in accordance with the created emergence profile of the provisional implant-supported restoration. Due to the specific adaptation of the scanbody, the conditioned supra-implant soft tissue complex was stabilized for the intraoral optical scan process. Then, the implant platform position and the supra-implant mucosa outline were transferred into the three-dimensional data set with a digital impression system. Within the technical workflow, the ZrO2 -implant-abutment substructure could be designed virtually with predictable margins of the supra-implant mucosa. RESULTS After finalization of the 1-piece screw-retained full ceramic implant crown, the restoration demonstrated an appealing treatment outcome with harmonious soft tissue architecture. CONCLUSIONS The IST facilitates a simple and fast approach for a supra-implant mucosal outline transfer in the digital workflow. Moreover, the IST closes the interfaces in the full digital pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy (DHM). It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a new technique to reconstruct the 3D dielectric function change in transparent dielectric materials and the application of the technique for on-line monitoring of refractive index modification in BK7 glass during direct femtosecond laser microfabrication. The complex optical field scattered from the modified region is measured using two-beam, single-shot interferogram and the distribution of the modified refractive index is reconstructed by numerically solving the inverse scattering problem in Born approximation. The optical configuration suggested is further development of digital holographic microscopy. It takes advantage of high spatial resolution and almost the same optical paths for both interfering beams, and allows ultrafast time resolution. © Springer Science+Business Media, LLC. 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Series Micro-Electro-Mechanical System (MEMS) switches based on superconductor are utilized to switch between two bandpass hairpin filters with bandwidths of 365 MHz and nominal center frequencies of 2.1 GHz and 2.6 GHz. This was accomplished with 4 switches actuated in pairs, one pair at a time. When one pair was actuated the first bandpass filter was coupled to the input and output ports. When the other pair was actuated the second bandpass filter was coupled to the input and output ports. The device is made of a YBa2Cu 3O7 thin film deposited on a 20 mm x 20 mm LaAlO3 substrate by pulsed laser deposition. BaTiO3 deposited by RF magnetron sputtering in utilized as the insulation layer at the switching points of contact. These results obtained assured great performance showing a switchable device at 68 V with temperature of 40 K for the 2.1 GHz filter and 75 V with temperature of 30 K for the 2.6 GHz hairpin filter. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research deals with the development of a dynamic job quotation system for printed circuit board (PCB) fabrication, which can estimate the price and completion time of a job based on customer preference and current capacity of the shop floor. The primary purpose of building a dynamic quotation system is to maximize the company's profit by quoting optimum lead-time and competitive price for the day-to-day orders received from different customers and original equipment manufacturers. The system was developed using MS-Access relational database. Evaluating the output of the system it was observed that the dynamic system provided more reliable estimation of the lead-time needed for fabricating new jobs. The overall price quoted by the system was competitive with higher profit margin when compared to traditional static systems. This system would therefore provide a vital link between the job quoting and scheduling system of the firm enabling better utilization of the available resources.