911 resultados para diamond machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder in which the cardinal symptoms arise from exocrine pancreatic insufficiency and bone marrow dysfunction. Previous studies have suggested increased risk of fatal complications among Finnish SDS infants. The genetic defect responsible for the disease was recently identified; the SBDS gene is located at chromosome 7q11 and encodes a protein that is involved in ribosome biosynthesis. The discovery of the SBDS gene has opened new insights into the pathogenesis of this multi-organ disease. This study aimed to assess phenotypic and genotypic features of Finnish patients with SDS. Seventeen Finnish patients with a clinical diagnosis of SDS were included in the study cohort. Extensive clinical, biochemical and imaging assessments were performed to elucidate the phenotypic features, and the findings were correlated with the SBDS genotype. Imaging studies included abdominal magnetic reso-nance imaging (MRI), brain MRI, cardiac echocardiography including tissue Doppler examination, and cardiac MRI. The skeletal phenotype was assessed by dual-energy X-ray absorptiometry and bone histomorphometry. Twelve patients had mutations in the SBDS gene. In MRI, a characteristic pattern of fat-replaced pancreas with occasional enhancement of scattered parenchymal foci and of pancreatic duct was noted in the SBDS mutation-positive patients while the mutation-negative patients did not have pancreatic fat accumulation. The patients with SBDS mutations had significantly reduced bone mineral density associated with low-energy peripheral fractures and vertebral compression fractures. Bone histomorphometry confirmed low-turnover osteoporosis. The patients with SBDS mutations had learning difficulties and smaller head size and brain volume than control subjects. Corpus callosum, cerebellar vermis, and pos-terior fossa structures were significantly smaller in SDS patients than in controls. Patients with SDS did not have evidence of clinical heart disease or myocardial fibrosis. However, subtle diastolic changes in the right ventricle and exercise-induced changes in the left ventricle contractile reserve were observed. This study expanded the phenotypic features of SDS to include primary low-turnover osteoporosis and structural alterations in the brain. Pancreatic MRI showed characteristic changes in the SBDS mutation-positive patients while these were absent in the mutation-negative patients, suggesting that MRI can be used to differentiate patients harbouring SBDS mutations from those without mutations. No evidence for clinical cardiac manifestations was found, but imaging studies revealed slightly altered myocardial function that may have clinical implications. These findings confirm the pleiotropic nature of SDS and underscore the importance of careful multidisciplinary follow-up of the affected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solvothermal reaction of Al2O3, H3BO3, pyridine, and H2O at 180 degrees C/7 days in the presence of organic amine molecules gave rise to four new aluminoborates, [(C6H18N2)(AlB6O13H3)], I; [(C5H16N2) (AlB5O10)]center dot 2H(2)O, II; [(C5H16N2)-(AlB5O10)], III; and [(C5H17N3)(AlB5O10)] center dot H2O, IV, with two- and three-dimensional structures. All the structures have been formed by the connectivity involving Al3+ ions and [B5O10] cyclic pentaborate units. In 1, the 3-connected trigonal nodes form a layer that resembles a graphite structure has been observed. The compounds II, III, and IV, have 4-connected nodes that forms a diamond related three-dimensional structure. The formation of solvatomorphs in II and III is noteworthy and has been observed first time in a family of amine template aluminoborates. A comparison of the various aluminoborate structures reveals subtle relationships between the organic amines (length of the amines) and the final framework structures. The compounds have been characterized using a variety of techniques including IR, second-order optical behavior, and MAS NMR studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentration required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It has been shown that as we increase the substrate roughness from 0.05 mu m to 0.91 mu m (centre line average or CLA) there is enhancement in deposited film quality (Raman peak intensity ratio of sp (3) to non-sp (3) content increases from 1.65 to 7.13) and the substrate temperature can be brought down to 640A degrees C without any additional substrate heating. The coatings grown at adverse conditions for sp (3) deposition has cauliflower morphology with nanocrystalline grains and coatings grown under favourable sp (3) condition gives clear faceted grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical microscopy study of stress relief patterns in diamondlike carbon films is presented. Interesting stress relief patterns are observed which include the well known sinusoidal type, branching pattern and string of beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of a sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diamond crystallites were synthesized using various oxygen‐hydrocarbon flames. The flames have been profiled in real time using a nonintrusive diagnostic technique. Optical emission spectra for different zones have been recorded and the active species identified. Diamond growth was observed only in the thermodynamically unequilibriated primary combustion zone of the flames. Carbon‐bearing species, atomic hydrogen, and atomic oxygen, noted to be critical for diamond growth, were observed in the flames. The diamond growth was confirmed by x‐ray diffraction, laser‐Raman analysis, and scanning electron microscopy. The study offers the first insight into the flame spectra in the context of diamond synthesis at atmospheric pressures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard, low stress diamond-like carbon films have been deposited by plasma assisted chemical vapour deposition technique, The various substrates include soft IR components like ZnS and ZnSe windows, Gaseous precursors such as propene, ethyl alcohol and acetone have been used to synthesize the films to study the nature of precursors in determining the film compatibility with the underlying component (substrate), The residual compressive stresses, the Young's modulus and the adhesion energy of the films have been estimated to be 10(10) dynes/cm(2), 10(10) N/m(2) and 1000 ergs/cm(2) respectively. To alleviate film failure, a study on the effects of additive gases such as hydrogen and the use of buffer layers such as ZrO2, has been undertaken, The diamond-like carbon films produced here are hard (5000 kg/mm(2)), specularly smooth in the wavelength region from 2.5 mu m to 20 mu m, with no microstructural features and have excellent adhesion on ZnS and ZnSe windows. The figure of merit of these films for aero-space applications has been evaluated by subjecting the film-buffer layer ZnS or ZnSe composite stack to wind, dust and rain erosion studies and by establishing the integrity of the specular IR transmittance of the stack upto 16 or 20 mu m as the case may be.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

brusive Jet Machining (AJM) or Micro Blast Machining is a non-traditional machining process, wherein material removal is effected by the erosive action of a high velocity jet of a gas, carrying fine-grained abrasive particles, impacting the work surface. The AJM process differs from conventional sand blasting in that the abrasive is much finer and the process parameters and cutting action are carefully controlled. The process is particularly suitable to cut intricate shapes in hard and brittle materials which are sensitive to heat and have a tendency to chip easily. In other words, AJM can handle virtually any hard or brittle material. Already the process has found its ways Into dozens of applications; sometimes replacing conventional alternatives often doing jobs that could not be done in any other way. This paper reviews the current status of this non-conventional machining process and discusses the unique advantages and possible applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoactivity lines for carbon with respect to diamond as the standard state have been calculated in the ternary system C-H-O at 1223 K to identify the diamond deposition domain. The gas composition is calculated by suppressing the formation of all condensed forms of carbon using the SOLGASMIX free-energy minimization program. Thirty six gas species were included in the calculation. From the gas composition, isoactivity lines are computed using recent data on the Gibbs energy of diamond. Except for activities less than 0.1, the isoactivity lines are almost linear on the C-H-O ternary diagram. Gas compositions which generate activity of diamond ranging from 1 to 100 at 1223 K fall inside a narrow wedge originating from the point representing CO. This wedge is very similar to the revised lens-shaped diamond growth domain identified by Bachman et al., using inputs from experiment. The small difference between the calculated and observed domains may be attributed to variation in the supersaturation required for diamond deposition with gas composition. The diamond solubility in the gas phase along the isoactivity line for a(di)=100 and P=6.7 kPa exhibits a minimum at 1280 K, which is close to the optimum temperature found experimentally. At higher supersaturations, non-diamond forms of carbon, including amorphous varieties, are expected. The results suggest that thermodynamic calculations can be useful for locating diamond growth domains in more complex CVD systems containing halogens, for which very little experimental data is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HOMO-LUMO gaps have been estimated in a graphite-like sp(2) carbon network with a progressive increase in the fraction of sp(3) carbons, taking into account several possible structural alternatives for each composition. The gap is shown to increase exponentially with the fraction of sp(3) carbons. Accordingly, the gap in a diamond-like sp(3) network decreases with the increase in the fraction of sp(2) carbons.