984 resultados para depth perception


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The aim of this study is to present face, content, and constructs validity of the endoscopic orthogonal video system (EndoViS) training system and determines its efficiency as a training and objective assessment tool of the surgeons’ psychomotor skills. Methods Thirty-five surgeons and medical students participated in this study: 11 medical students, 19 residents, and 5 experts. All participants performed four basic skill tasks using conventional laparoscopic instruments and EndoViS training system. Subsequently, participants filled out a questionnaire regarding the design, realism, overall functionality, and its capabilities to train hand–eye coordination and depth perception, rated on a 5-point Likert scale. Motion data of the instruments were obtained by means of two webcams built into a laparoscopic physical trainer. To identify the surgical instruments in the images, colored markers were placed in each instrument. Thirteen motion-related metrics were used to assess laparoscopic performance of the participants. Statistical analysis of performance was made between novice, intermediate, and expert groups. Internal consistency of all metrics was analyzed with Cronbach’s α test. Results Overall scores about features of the EndoViS system were positives. Participants agreed with the usefulness of tasks and the training capacities of EndoViS system (score >4). Results presented significant differences in the execution of three skill tasks performed by participants. Seven metrics showed construct validity for assessment of performance with high consistency levels. Conclusions EndoViS training system has been successfully validated. Results showed that EndoViS was able to differentiate between participants of varying laparoscopic experience. This simulator is a useful and effective tool to objectively assess laparoscopic psychomotor skills of the surgeons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La percepción de profundidad se hace imprescindible en muchas tareas de manipulación, control visual y navegación de robots. Las cámaras de tiempo de vuelo (ToF: Time of Flight) generan imágenes de rango que proporcionan medidas de profundidad en tiempo real. No obstante, el parámetro distancia que calculan estas cámaras es fuertemente dependiente del tiempo de integración que se configura en el sensor y de la frecuencia de modulación empleada por el sistema de iluminación que integran. En este artículo, se presenta una metodología para el ajuste adaptativo del tiempo de integración y un análisis experimental del comportamiento de una cámara ToF cuando se modifica la frecuencia de modulación. Este método ha sido probado con éxito en algoritmos de control visual con arquitectura ‘eye-in-hand’ donde el sistema sensorial está compuesto por una cámara ToF. Además, la misma metodología puede ser aplicada en otros escenarios de trabajo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Minimally-invasive microsurgery has resulted in improved outcomes for patients. However, operating through a microscope limits depth perception and fixes the visual perspective, which result in a steep learning curve to achieve microsurgical proficiency. We introduce a surgical imaging system employing four-dimensional (live volumetric imaging through time) microscope-integrated optical coherence tomography (4D MIOCT) capable of imaging at up to 10 volumes per second to visualize human microsurgery. A custom stereoscopic heads-up display provides real-time interactive volumetric feedback to the surgeon. We report that 4D MIOCT enhanced suturing accuracy and control of instrument positioning in mock surgical trials involving 17 ophthalmic surgeons. Additionally, 4D MIOCT imaging was performed in 48 human eye surgeries and was demonstrated to successfully visualize the pathology of interest in concordance with preoperative diagnosis in 93% of retinal surgeries and the surgical site of interest in 100% of anterior segment surgeries. In vivo 4D MIOCT imaging revealed sub-surface pathologic structures and instrument-induced lesions that were invisible through the operating microscope during standard surgical maneuvers. In select cases, 4D MIOCT guidance was necessary to resolve such lesions and prevent post-operative complications. Our novel surgical visualization platform achieves surgeon-interactive 4D visualization of live surgery which could expand the surgeon's capabilities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The world health organization defines musculoskeletal disorder (MSD) as “a disorder of muscles, tendons, peripheral vascular system not directly resulting from an acute or instantaneous event.1 Work related MSDs are one of the most important occupational hazards.1 Among many other occupations, dentistry is a highly demanding profession that requires good visual acuity, hearing, depth perception, psychomotor skills, manual dexterity, and ability to maintain occupational postures over long periods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparison among different consumer 3D display technologies by means of a subjective assessment test. Therefore, four 55-in displays have been considered: one autostereoscopic display, one stereoscopic with polarized passive glasses, and two with active shutter glasses. In addition, a high-quality 3D video database has been used to show diverse material with both views in high definition. To carry out the test, standard recommendations have been followed considering also some modifications looking for a test environment more similar to real home viewing conditions, with the objective of obtaining more representative conclusions. Moreover, several perceptual factors have been considered to study the performance of the displays, such as picture quality, depth perception, and visual discomfort. The obtained results show interesting issues, like the performance improvement of active shutter glasses technology, the high performance of the polarized glasses technology in terms of quality and comfort, and the need of improvement of the autostereoscopic displays to complement the visual comfort to reach a global high-quality visual experience.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Of the many ways in which depth can be intimated in drawings, perspective has undoubtedly been one of the most frequently examined. But there is also an equally rich history associated with other forms of pictorial representation. Alternatives to perspective became particularly significant in the early twentieth century as artists and architects, intent on throwing off the conventions of their predecessors, looked to new ways of depicting depth. In architecture, this tendency was exemplified by Modernism’s preference for parallel projection – most notably axonometric and oblique. The use of these techniques gave architects the opportunity to convey a new and uniquely modern form of spatial expression. At once shallow and yet expansive, a key feature of these drawings was their ability to support perceptual ambiguity. This paper will consider the philosophy and science of vision, out of which these preoccupations emerged. In this context, the nineteenth-century discovery of stereopsis and the invention of the stereoscope will be used to illustrate the way in which attempts to test the limits of spatial perception led to an opening up of visual experience; and provided a definition of visual experience that could encompass the representational ambiguities later exploited by the early twentieth-century avant-garde.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a series of 6 experiments, two hypotheses were tested: that nominal heading perception is determined by the relative motion of images of objects positioned at different depths (R. F. Wang & J. E. Cutting 1999) and that static depth information contributes to this determination. By manipulating static depth information while holding retinal-image motion constant during  simulated self-movement, the authors found that static depth information played a role in determining perceived heading. Some support was also found for the involvement of R. F. Wang and J. E. Cutting’s (1999) categories of object-image relative motion in determining perceived heading. However, results suggested an unexpected functional dominance of information about heading relative to apparently near objects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Investigates visual information that enables human to effectively guide their movement through the environment. This problem is fundamental to the study of human behaviour, since survival is contingent upon the acquisition of resources that lie in different locations throughout the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. Experienced drivers have better hazard perception ability compared to inexperienced drivers. Eye gaze patterns have been found to be an indicator of the driver's competency level. The aim of this paper is to develop an in-vehicle system which correlates information about the driver's gaze and vehicle dynamics, which is then used to assist driver trainers in assessing driving competency. This system allows visualization of the complete driving manoeuvre data on interactive maps. It uses an eye tracker and perspective projection algorithms to compute the depth of gaze and plots it on Google maps. This interactive map also features the trajectory of the vehicle and turn indicator usage. This system allows efficient and user friendly analysis of the driving task. It can be used by driver trainers and trainees to understand objectively the risks encountered during driving manoeuvres. This paper presents a prototype that plots the driver's eye gaze depth and direction on an interactive map along with the vehicle dynamics information. This prototype will be used in future to study the difference in gaze patterns in novice and experienced drivers prior to a certain manoeuvre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. Methods Using a randomized within-person 2 (water depth: 0.45, 0.90 m) ×3 (water speed: 0.4, 0.8, 1.2 m/s) experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. Results Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual–perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. Conclusions These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scene understanding has been investigated from a mainly visual information point of view. Recently depth has been provided an extra wealth of information, allowing more geometric knowledge to fuse into scene understanding. Yet to form a holistic view, especially in robotic applications, one can create even more data by interacting with the world. In fact humans, when growing up, seem to heavily investigate the world around them by haptic exploration. We show an application of haptic exploration on a humanoid robot in cooperation with a learning method for object segmentation. The actions performed consecutively improve the segmentation of objects in the scene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binocular perception of shape and depth relations between objects can change considerably if the viewing direction is changed only by a small angle. We explored this effect psychophysically and found a strong depth reduction effect for large disparity gradients. The effect is found to be strongest for horizontally oriented stimuli, and stronger for line stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach which allows integration of information from different types of matching primitives weighted according to their robustness.