925 resultados para dehydrogenase
Resumo:
The 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3 beta-HSD gene homolog,was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3 beta-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3 beta-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3 beta-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3 beta-HSD in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3 beta-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3 beta-HSD might be a protein involved in host-virus interaction. @ 2006 Elsevier Inc. All rights reserved.
Resumo:
Using degenerate primers based on conserved regions of the UDP-glucose dehydrogenase (UDPGDH) gene, an initial 476-bp DNA fragment was amplified from the water-bloom forming cyanobacterium, Microcystis aeruginosa FACHB 905. TAIL-PCR and ligation-mediated PCR were used to amplify the flanking regions to isolate an about 2.5-kb genomic DNA fragment. Sequence analysis revealed an ORF encoding a putative 462 amino acid protein, designated Mud for Microcystis UDPGDH. The Mud amino acid sequence is closely related to UDPGDH sequences from cyanobacterium Synechocystis PCC6803 (73% identity, 81% similarity), and bacterium Bacillus subtilis (51% identity and 67% similarity). The cloned mud gene was expressed in Escherichia coli using the pGEX-4T-1 fusion expression vector system to generate a GST-Mud fusion protein that exhibited UDPGDH activity. The cytosolic fraction of M aeruginosa FACHB 905 was subjected to Western analysis with an anti-Mud antibody, which revealed a single band of approximately 49 kD, consistent with the deduced molecular mass of the enzyme. The Mud protein could thus be characterized as a UDP-glucose dehydrogenase, which was a key enzyme for polysaccharide synthesis and has, for the first time, been studied in algae.
Resumo:
In this work, the excel lent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H2O2) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors.
Resumo:
Based on electrogenerated chemiluminescence (ECL), a novel method for fabrication of alcohol dehydrogenase (ADH) biosensor by self-assembling ADH to Ru(bpy)(3)(2+) -AuNPs aggregates (Ru-AuNPs) on indium tin oxide (ITO) electrode surface has been developed. Positively charged Ru(bpy)(3)(2+) could be immobilized stably on the electrode surface with negatively charged AuNPs in the form of aggregate via electrostatic interaction. On the other hand, AuNPs are favourable candidates for the immobilization of enzymes because amine groups and cysteine residues in the enzymes are known to bind strongly with AuNPs. Moreover, AuNPs can act as tiny conduction centers to facilitate the transfer of electrons. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate, and it displayed wide linear range, high sensitivity and good stability.
Resumo:
A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bPY)(3)(2+) and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)(3)(2+) by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 x 10(-6) M for alcohol (S/N = 3) with a linear range from 2.79 x 10(-5) to 5.78 x 10(-2) M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.
Resumo:
In this paper, the effects of rare earth ions (La3+, Eu3+, Dy3+, Yb3+) and their complexes with calmodulin on the activity of lactate dehydrogenase (LDH) were investigated. The results reveal that whether binding with calmodulin or not, rare earth ions show a minor activation effects on LDH when their concentrations are less than 3 mu mol (.) L-1, but indicate some strong inhibitory effects on LDH activity when the concentrations are above 5 mu mol (.) L-1. Calmodulin, which is a calcium-dependent regulator, can stimulate LDH activity and release the inhibitory effects of rare earth ion. Diethylenetriamine pentaacetic acid(DTPA) and its derivatives bisdimethylamide-diethylenetriamine pentaacetic acid (DTPA-BDMA), bisisonicotinyl-diethylenetriamine pentaacetic acid (DTPA-BIN), which are often used as ligands to metal ions, inhibit LDH activity when their concentrations are above 5 mu mol (.) L-1. Calmodulin can also release their inhibitory effects at the same time.
Resumo:
Three β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) catalyze the oxidative conversion of Δ5-3β-hydroxysteroids to the Δ4-3-keto configuration and is therefore essential for the biosynthesis of all classes of hormonal steroids, namely progesterone, glucocorticoids, mineralocorticoids, androgens, and estrogens. Using human 3β-HSD cDNA as probe, a human 3β-HSD gene was isolated from a λ-EMBL3 library of leucocyte genomic DNA. A fragment of 3β-HSD genomic DNA was also obtained by amplification of genomic DNA using the polymerase chain reaction. The 3β-HSD gene contains a 5′-untranslated exon of 53 base pairs (bp) and three successive translated exons of 232, 165, and 1218 bp, respectively, separated by introns of 129, 3883, and 2162 bp. The transcription start site is situated 267 nucleotides upstream from the ATG initiating codon. DNA sequence analysis of the 5′-flanking region reveals the existence of a putative TATA box (ATAAA) situated 28 nucleotides upstream from the transcription start site while a putative CAAT binding sequence is located 57 nucleotides upstream from the TATA box. Expression of a cDNA insert containing the coding region of 3β-HSD in nonsteroidogenic cells shows that the gene encodes a single 42-kDa protein containing both 3β-hydroxysteroid dehydrogenase and Δ5-Δ4-isomerase activities. Moreover, all natural steroid substrates tested are transformed with comparable efficiency by the enzyme. In addition to its importance for studies of the regulation of expression of 3β-HSD in gonadal as well as peripheral tissues, knowledge of the structure of the human 3β-HSD gene should permit investigation of the molecular defects responsible for 3β-HSD deficiency, the second most common cause of adrenal hyperplasia in children.
Resumo:
Complementary DNA encoding human 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (30-HSD) has been expressed in transfected GH4C1 with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of [3H]-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3β-HSD, the present study shows that 4MA (N,N-diethyl-4-rnethyl-3-oxo-4-aza-5α-androstane-17β-carboxamide) and its analogues inhibit DHEA oxidation competitively while they exert a noncompetitive inhibition of the isomerization of 5-androstenedione to 4-androstenedione with an approximately 1000-fold higher Ki value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3β-HSD protein. In addition, using 5α-dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol as substrates for dehydrogenase activity only, we have found that dehydrogenase activity is reversibly and competitively inhibited by 4MA. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration. © 1991 American Chemical Society.
Resumo:
We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.
Resumo:
Transient expression in nonsteroidogenic mammalian cells of the rat wild type I and type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β- HSD) cDNAs shows that the encoded proteins, in addition to being able to catalyze the oxidation and isomerization of Δ5-3β-hydroxysteroid precursors into the corresponding Δ4-3-ketosteroids, interconvert 5α- dihydrotestosterone (DHT) and 5α-androstane-3β,17β-diol (3β-diol). When homogenate from cells transfected with a plasmid vector containing type I 3β-HSD is incubated in the presence of DHT using NAD+ as cofactor, a somewhat unexpected metabolite is formed, namely 5α-androstanedione (A- dione), thus indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD isoform. Although the relative Vmax of 17β-HSD activity is 14.9-fold lower than that of 3β-HSD activity, the Km value for the 17β-HSD activity of type I 3β-HSD is 7.97 μM, a value which is in the same range as the conversion of DHT into 3β- diol which shows a Km value of 4.02 μM. Interestingly, this 17β-HSD activity is highly predominant in unbroken cells in culture, thus supporting the physiological relevance of this 'secondary' activity. Such 17β-HSD activity is inhibited by the classical substrates of 3β-HSD, namely pregnenolone (PREG), dehydroepiandrosterone (DHEA), Δ5-androstene-3β,17β- diol (Δ5-diol), 5α-androstane-3β,17β-diol (3β-diol) and DHT, with IC50 values of 2.7, 1.0, 3.2, 6.2, and 6.3 μM, respectively. Although dual enzymatic activities have been previously reported for purified preparations of other steroidogenic enzymes, the present data demonstrate the multifunctional enzymatic activities associated with a recombinant oxidoreductase enzyme. In addition to its well known 3β-HSD activity, this enzyme possesses the ability to catalyze DHT into A-dione thus potentially controlling the level of the active androgen DHT in classical steroidogenic as well as peripheral intracrine tissues.
Resumo:
The xoxF gene, encoding a pyrroloquinoline quinone-dependent methanol dehydrogenase, is found in all known proteobacterial methylotrophs. In several newly discovered methylotrophs, XoxF is the active methanol dehydrogenase, catalysing the oxidation of methanol to formaldehyde. Apart from that, its potential role in methylotrophy and carbon cycling is unknown. So far, the diversity of xoxF in the environment has received little attention. We designed PCR primer sets targeting clades of the xoxF gene, and used 454 pyrosequencing of PCR amplicons obtained from DNA of four coastal marine environments for a unique assessment of the diversity of xoxF in these habitats. Phylogenetic analysis of the data obtained revealed a high diversity of xoxF genes from two of the investigated clades, and substantial differences in sequence composition between environments. Sequences were classified as being related to a wide range of both methylotrophs and non-methylotrophs from Alpha-, Beta- and Gammaproteobacteria. The most prominent sequences detected were related to the family Rhodobacteraceae, the genus Methylotenera and the OM43 clade of Methylophilales, and are thus related to organisms that employ XoxF for methanol oxidation. Furthermore, our analyses revealed a high degree of so far undescribed sequences, suggesting a high number of unknown species in these habitats.