62 resultados para defocusing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy.^ One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute.^ The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm.^ Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base.^ The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation.^ 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data.^ Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical significant differences in detail visibility between the copies and the originals. Detail visibility was better in the originals. (4) Feature interpretations were not significantly different between the originals and the copies. (5) Perception of image quality did not affect image interpretation.^ Continuation and improvement of this research ca be accomplished by: using a case population more sensitive to MTF changes, i.e., asymptomatic women with minimum breast cancer, more observers (including less experienced radiologists and experienced technologists) must collaborate in the study, and using a minimum of 200 benign and 200 malignant cases.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to direct-scatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast and entropy provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic Aperture Radar (SAR) images a target region reflectivity function in the multi-dimensional spatial domain of range and cross-range. SAR synthesizes a large aperture radar in order to achieve a finer azimuth resolution than the one provided by any on-board real antenna. Conventional SAR techniques assume a single reflection of transmitted waveforms from targets. Nevertheless, today¿s new scenes force SAR systems to work in urban environments. Consequently, multiple-bounce returns are added to directscatter echoes. We refer to these as ghost images, since they obscure true target image and lead to poor resolution. By analyzing the quadratic phase error (QPE), this paper demonstrates that Earth¿s curvature influences the defocusing degree of multipath returns. In addition to the QPE, other parameters such as integrated sidelobe ratio (ISLR), peak sidelobe ratio (PSLR), contrast (C) and entropy (E) provide us with the tools to identify direct-scatter echoes in images containing undesired returns coming from multipath.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dispersive wave turbulence is studied numerically for a class of one-dimensional nonlinear wave equations. Both deterministic and random (white noise in time) forcings are studied. Four distinct stable spectra are observed—the direct and inverse cascades of weak turbulence (WT) theory, thermal equilibrium, and a fourth spectrum (MMT; Majda, McLaughlin, Tabak). Each spectrum can describe long-time behavior, and each can be only metastable (with quite diverse lifetimes)—depending on details of nonlinearity, forcing, and dissipation. Cases of a long-live MMT transient state dcaying to a state with WT spectra, and vice-versa, are displayed. In the case of freely decaying turbulence, without forcing, both cascades of weak turbulence are observed. These WT states constitute the clearest and most striking numerical observations of WT spectra to date—over four decades of energy, and three decades of spatial, scales. Numerical experiments that study details of the composition, coexistence, and transition between spectra are then discussed, including: (i) for deterministic forcing, sharp distinctions between focusing and defocusing nonlinearities, including the role of long wavelength instabilities, localized coherent structures, and chaotic behavior; (ii) the role of energy growth in time to monitor the selection of MMT or WT spectra; (iii) a second manifestation of the MMT spectrum as it describes a self-similar evolution of the wave, without temporal averaging; (iv) coherent structures and the evolution of the direct and inverse cascades; and (v) nonlocality (in k-space) in the transferral process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in the low-amplitude limit. A new family of stable localized structures is found: these are bright and gray cavity solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type can be controlled by discrete diffraction and are stable when the bistability of homogenous states is absent. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that an interplay between diffraction and defocusing nonlinearity can support stable self-similar plasmonic waves with a parabolic profile. Simplicity of a parabolic shape combined with the corresponding parabolic spatial phase distribution creates opportunities for controllable manipulation of plasmons through a combined action of diffraction and nonlinearity. © 2013 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a theoretical explanation of the results on the intensity distributions and correlation functions obtained from a random-beam speckle field in nonlinear bulk waveguides reported in the recent publication by Bromberg et al. [Nat. Photonics 4, 721 (2010) ].. We study both the focusing and defocusing cases and in the limit of small speckle size (short-correlated disordered beam) provide analytical asymptotes for the intensity probability distributions at the output facet. Additionally we provide a simple relation between the speckle sizes at the input and output of a focusing nonlinear waveguide. The results are of practical significance for nonlinear Hanbury Brown and Twiss interferometry in both optical waveguides and Bose-Einstein condensates. © 2012 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed.