825 resultados para decision support tool
Resumo:
In order to achieve progress towards sustainable resource management, it is essential to evaluate options for the reuse and recycling of secondary raw materials, in order to provide a robust evidence base for decision makers. This paper presents the research undertaken in the development of a web-based decision-support tool (the used tyres resource efficiency tool) to compare three processing routes for used tyres compared to their existing primary alternatives. Primary data on the energy and material flows for the three routes, and their alternatives were collected and analysed. The methodology used was a streamlined life-cycle assessment (sLCA) approach. Processes included were: car tyre baling against aggregate gabions; car tyre retreading against new car tyres; and car tyre shred used in landfill engineering against primary aggregates. The outputs of the assessment, and web-based tool, were estimates of raw materials used, carbon dioxide emissions and costs. The paper discusses the benefits of carrying out a streamlined LCA and using the outputs of this analysis to develop a decision-support tool. The strengths and weakness of this approach are discussed and future research priorities identified which could facilitate the use of life cycle approaches by designers and practitioners.
Resumo:
The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.
Resumo:
El sistema de fangs activats és el tractament biològic més àmpliament utilitzat arreu del món per la depuració d'aigües residuals. El seu funcionament depèn de la correcta operació tant del reactor biològic com del decantador secundari. Quan la fase de sedimentació no es realitza correctament, la biomassa no decantada s'escapa amb l'efluent causant un impacte sobre el medi receptor. Els problemes de separació de sòlids, són actualment una de les principals causes d'ineficiència en l'operació dels sistemes de fangs activats arreu del món. Inclouen: bulking filamentós, bulking viscós, escumes biològiques, creixement dispers, flòcul pin-point i desnitrificació incontrolada. L'origen dels problemes de separació generalment es troba en un desequilibri entre les principals comunitats de microorganismes implicades en la sedimentació de la biomassa: els bacteris formadors de flòcul i els bacteris filamentosos. Degut a aquest origen microbiològic, la seva identificació i control no és una tasca fàcil pels caps de planta. Els Sistemes de Suport a la Presa de Decisions basats en el coneixement (KBDSS) són un grup d'eines informàtiques caracteritzades per la seva capacitat de representar coneixement heurístic i tractar grans quantitats de dades. L'objectiu de la present tesi és el desenvolupament i validació d'un KBDSS específicament dissenyat per donar suport als caps de planta en el control dels problemes de separació de sòlids d'orígen microbiològic en els sistemes de fangs activats. Per aconseguir aquest objectiu principal, el KBDSS ha de presentar les següents característiques: (1) la implementació del sistema ha de ser viable i realista per garantir el seu correcte funcionament; (2) el raonament del sistema ha de ser dinàmic i evolutiu per adaptar-se a les necessitats del domini al qual es vol aplicar i (3) el raonament del sistema ha de ser intel·ligent. En primer lloc, a fi de garantir la viabilitat del sistema, s'ha realitzat un estudi a petita escala (Catalunya) que ha permès determinar tant les variables més utilitzades per a la diagnosi i monitorització dels problemes i els mètodes de control més viables, com la detecció de les principals limitacions que el sistema hauria de resoldre. Els resultats d'anteriors aplicacions han demostrat que la principal limitació en el desenvolupament de KBDSSs és l'estructura de la base de coneixement (KB), on es representa tot el coneixement adquirit sobre el domini, juntament amb els processos de raonament a seguir. En el nostre cas, tenint en compte la dinàmica del domini, aquestes limitacions es podrien veure incrementades si aquest disseny no fos òptim. En aquest sentit, s'ha proposat el Domino Model com a eina per dissenyar conceptualment el sistema. Finalment, segons el darrer objectiu referent al seguiment d'un raonament intel·ligent, l'ús d'un Sistema Expert (basat en coneixement expert) i l'ús d'un Sistema de Raonament Basat en Casos (basat en l'experiència) han estat integrats com els principals sistemes intel·ligents encarregats de dur a terme el raonament del KBDSS. Als capítols 5 i 6 respectivament, es presenten el desenvolupament del Sistema Expert dinàmic (ES) i del Sistema de Raonament Basat en Casos temporal, anomenat Sistema de Raonament Basat en Episodis (EBRS). A continuació, al capítol 7, es presenten detalls de la implementació del sistema global (KBDSS) en l'entorn G2. Seguidament, al capítol 8, es mostren els resultats obtinguts durant els 11 mesos de validació del sistema, on aspectes com la precisió, capacitat i utilitat del sistema han estat validats tant experimentalment (prèviament a la implementació) com a partir de la seva implementació real a l'EDAR de Girona. Finalment, al capítol 9 s'enumeren les principals conclusions derivades de la present tesi.
Resumo:
Aim: To develop a list of prescribing indicators specific for the hospital setting that would facilitate the prospective collection of high severity and/or high frequency prescribing errors, which are also amenable to electronic clinical decision support (CDS). Method: A three-stage consensus technique (electronic Delphi) was carried out with 20 expert pharmacists and physicians across England. Participants were asked to score prescribing errors using a 5-point Likert scale for their likelihood of occurrence and the severity of the most likely outcome. These were combined to produce risk scores, from which median scores were calculated for each indicator across the participants in the study. The degree of consensus between the participants was defined as the proportion that gave a risk score in the same category as the median. Indicators were included if a consensus of 80% or more was achieved. Results: A total of 80 prescribing errors were identified by consensus as being high or extreme risk. The most common drug classes named within the indicators were antibiotics (n=13), antidepressants (n=8), nonsteroidal anti-inflammatory drugs (n=6), and opioid analgesics (n=6).The most frequent error type identified as high or extreme risk were those classified as clinical contraindications (n=29/80). Conclusion: 80 high risk prescribing errors in the hospital setting have been identified by an expert panel. These indicators can serve as the basis for a standardised, validated tool for the collection of data in both paperbased and electronic prescribing processes, as well as to assess the impact of electronic decision support implementation or development.
Resumo:
Making diagnoses in oral pathology are often difficult and confusing in dental practice, especially for the lessexperienced dental student. One of the most promising areas in bioinformatics is computer-aided diagnosis, where a computer system is capable of imitating human reasoning ability and provides diagnoses with an accuracy approaching that of expert professionals. This type of system could be an alternative tool for assisting dental students to overcome the difficulties of the oral pathology learning process. This could allow students to define variables and information, important to improving the decision-making performance. However, no current open data management system has been integrated with an artificial intelligence system in a user-friendly environment. Such a system could also be used as an education tool to help students perform diagnoses. The aim of the present study was to develop and test an open case-based decisionsupport system.Methods: An open decision-support system based on Bayes' theorem connected to a relational database was developed using the C++ programming language. The software was tested in the computerisation of a surgical pathology service and in simulating the diagnosis of 43 known cases of oral bone disease. The simulation was performed after the system was initially filled with data from 401 cases of oral bone disease.Results: the system allowed the authors to construct and to manage a pathology database, and to simulate diagnoses using the variables from the database.Conclusion: Combining a relational database and an open decision-support system in the same user-friendly environment proved effective in simulating diagnoses based on information from an updated database.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
BACKGROUND: The most effective decision support systems are integrated with clinical information systems, such as inpatient and outpatient electronic health records (EHRs) and computerized provider order entry (CPOE) systems. Purpose The goal of this project was to describe and quantify the results of a study of decision support capabilities in Certification Commission for Health Information Technology (CCHIT) certified electronic health record systems. METHODS: The authors conducted a series of interviews with representatives of nine commercially available clinical information systems, evaluating their capabilities against 42 different clinical decision support features. RESULTS: Six of the nine reviewed systems offered all the applicable event-driven, action-oriented, real-time clinical decision support triggers required for initiating clinical decision support interventions. Five of the nine systems could access all the patient-specific data items identified as necessary. Six of the nine systems supported all the intervention types identified as necessary to allow clinical information systems to tailor their interventions based on the severity of the clinical situation and the user's workflow. Only one system supported all the offered choices identified as key to allowing physicians to take action directly from within the alert. Discussion The principal finding relates to system-by-system variability. The best system in our analysis had only a single missing feature (from 42 total) while the worst had eighteen.This dramatic variability in CDS capability among commercially available systems was unexpected and is a cause for concern. CONCLUSIONS: These findings have implications for four distinct constituencies: purchasers of clinical information systems, developers of clinical decision support, vendors of clinical information systems and certification bodies.
Resumo:
Land degradation is intrinsically complex and involves decisions by many agencies and individuals, land degradation map- ping should be used as a learning tool through which managers, experts and stakeholders can re-examine their views within a wider semantic context. In this paper, we introduce an analytical framework for mapping land degradation, developed by World Overview for Conservation Approaches and technologies (WOCAT) programs, which aims to develop some thematic maps that serve as an useful tool and including effective information on land degradation and conservation status. Consequently, this methodology would provide an important background for decision-making in order to launch rehabilitation/remediation actions in high-priority intervention areas. As land degradation mapping is a problem-solving task that aims to provide clear information, this study entails the implementation of WOCAT mapping tool, which integrate a set of indicators to appraise the severity of land degradation across a representative watershed. So this work focuses on the use of the most relevant indicators for measuring impacts of different degradation processes in El Mkhachbiya catchment, situated in Northwest of Tunisia and those actions taken to deal with them based on the analysis of operating modes and issues of degradation in different land use systems. This study aims to provide a database for surveillance and monitoring of land degradation, in order to support stakeholders in making appropriate choices and judge guidelines and possible suitable recommendations to remedy the situation in order to promote sustainable development. The approach is illustrated through a case study of an urban watershed in Northwest of Tunisia. Results showed that the main land degradation drivers in the study area were related to natural processes, which were exacerbated by human activities. So the output of this analytical framework enabled a better communication of land degradation issues and concerns in a way relevant for policymakers.
Resumo:
This article describes a knowledge-based application in the domain of road traffic management that we have developed following a knowledge modeling approach and the notion of problem-solving method. The article presents first a domain-independent model for real-time decision support as a structured collection of problem solving methods. Then, it is described how this general model is used to develop an operational version for the domain of traffic management. For this purpose, a particular knowledge modeling tool, called KSM (Knowledge Structure Manager), was applied. Finally, the article shows an application developed for a traffic network of the city of Madrid and it is compared with a second application developed for a different traffic area of the city of Barcelona.
Resumo:
Conventional project management techniques are not always sufficient to ensure time, cost and quality achievement of large-scale construction projects due to complexity in planning, design and implementation processes. The main reasons for project non-achievement are changes in scope and design, changes in government policies and regulations, unforeseen inflation, underestimation and improper estimation. Projects that are exposed to such an uncertain environment can be effectively managed with the application of risk management throughout the project's life cycle. However, the effectiveness of risk management depends on the technique through which the effects of risk factors are analysed/quantified. This study proposes the Analytic Hierarchy Process (AHP), a multiple attribute decision making technique, as a tool for risk analysis because it can handle subjective as well as objective factors in a decision model that are conflicting in nature. This provides a decision support system (DSS) to project management for making the right decision at the right time for ensuring project success in line with organisation policy, project objectives and a competitive business environment. The whole methodology is explained through a case application of a cross-country petroleum pipeline project in India and its effectiveness in project management is demonstrated.
Resumo:
Mental-health risk assessment practice in the UK is mainly paper-based, with little standardisation in the tools that are used across the Services. The tools that are available tend to rely on minimal sets of items and unsophisticated scoring methods to identify at-risk individuals. This means the reasoning by which an outcome has been determined remains uncertain. Consequently, there is little provision for: including the patient as an active party in the assessment process, identifying underlying causes of risk, and eecting shared decision-making. This thesis develops a tool-chain for the formulation and deployment of a computerised clinical decision support system for mental-health risk assessment. The resultant tool, GRiST, will be based on consensual domain expert knowledge that will be validated as part of the research, and will incorporate a proven psychological model of classication for risk computation. GRiST will have an ambitious remit of being a platform that can be used over the Internet, by both the clinician and the layperson, in multiple settings, and in the assessment of patients with varying demographics. Flexibility will therefore be a guiding principle in the development of the platform, to the extent that GRiST will present an assessment environment that is tailored to the circumstances in which it nds itself. XML and XSLT will be the key technologies that help deliver this exibility.
Resumo:
Clinical Decision Support Systems (CDSSs) need to disseminate expertise in formats that suit different end users and with functionality tuned to the context of assessment. This paper reports research into a method for designing and implementing knowledge structures that facilitate the required flexibility. A psychological model of expertise is represented using a series of formally specified and linked XML trees that capture increasing elements of the model, starting with hierarchical structuring, incorporating reasoning with uncertainty, and ending with delivering the final CDSS. The method was applied to the Galatean Risk and Safety Tool, GRiST, which is a web-based clinical decision support system (www.egrist.org) for assessing mental-health risks. Results of its clinical implementation demonstrate that the method can produce a system that is able to deliver expertise targetted and formatted for specific patient groups, different clinical disciplines, and alternative assessment settings. The approach may be useful for developing other real-world systems using human expertise and is currently being applied to a logistics domain. © 2013 Polish Information Processing Society.
Resumo:
In the field of mental health risk assessment, there is no standardisation between the data used in different systems. As a first step towards the possible interchange of data between assessment tools, an ontology has been constructed for a particular one, GRiST (Galatean Risk Screening Tool). We briefly introduce GRiST and its data structures, then describe the ontology and the benefits that have already been realised from the construction process. For example, the ontology has been used to check the consistency of the various trees used in the model. We then consider potential uses in integration of data from other sources. © 2009 IEEE.
Resumo:
This paper presents the application of Networks of Evolutionary Processors to Decision Support Systems, precisely Knowledge-Driven DSS. Symbolic information and rule-based behavior in Networks of Evolutionary Processors turn out to be a great tool to obtain decisions based on objects present in the network. The non-deterministic and massive parallel way of operation results in NP-problem solving in linear time. A working NEP example is shown.
Resumo:
This paper describes the basic tools for a real-time decision support system of a semiotic type on the example of the prototype for management and monitoring of a nuclear power block implemented on the basis of the tool complex G2+GDA using cognitive graphics and parallel processing. This work was supported by RFBR (project 02-07-90042).