971 resultados para data management planning
Resumo:
Work on distributed data management commenced shortly after the introduction of the relational model in the mid-1970's. 1970's and 1980's were very active periods for the development of distributed relational database technology, and claims were made that in the following ten years centralized databases will be an “antique curiosity” and most organizations will move toward distributed database managers [1]. That prediction has certainly become true, and all commercial DBMSs today are distributed.
Resumo:
The manipulation and handling of an ever increasing volume of data by current data-intensive applications require novel techniques for e?cient data management. Despite recent advances in every aspect of data management (storage, access, querying, analysis, mining), future applications are expected to scale to even higher degrees, not only in terms of volumes of data handled but also in terms of users and resources, often making use of multiple, pre-existing autonomous, distributed or heterogeneous resources.
Resumo:
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted.
Resumo:
The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.
Resumo:
Replication Data Management (RDM) aims at enabling the use of data collections from several iterations of an experiment. However, there are several major challenges to RDM from integrating data models and data from empirical study infrastructures that were not designed to cooperate, e.g., data model variation of local data sources. [Objective] In this paper we analyze RDM needs and evaluate conceptual RDM approaches to support replication researchers. [Method] We adapted the ATAM evaluation process to (a) analyze RDM use cases and needs of empirical replication study research groups and (b) compare three conceptual approaches to address these RDM needs: central data repositories with a fixed data model, heterogeneous local repositories, and an empirical ecosystem. [Results] While the central and local approaches have major issues that are hard to resolve in practice, the empirical ecosystem allows bridging current gaps in RDM from heterogeneous data sources. [Conclusions] The empirical ecosystem approach should be explored in diverse empirical environments.
Resumo:
In this paper we approximate to the understanding of the hybrid city as a context of changes, produced in the perception and in the modes of inhabiting and coexisting in cities through new technologies of information and communication.
Resumo:
Camera traps have become a widely used technique for conducting biological inventories, generating a large number of database records of great interest. The main aim of this paper is to describe a new free and open source software (FOSS), developed to facilitate the management of camera-trapped data which originated from a protected Mediterranean area (SE Spain). In the last decade, some other useful alternatives have been proposed, but ours focuses especially on a collaborative undertaking and on the importance of spatial information underpinning common camera trap studies. This FOSS application, namely, “Camera Trap Manager” (CTM), has been designed to expedite the processing of pictures on the .NET platform. CTM has a very intuitive user interface, automatic extraction of some image metadata (date, time, moon phase, location, temperature, atmospheric pressure, among others), analytical (Geographical Information Systems, statistics, charts, among others), and reporting capabilities (ESRI Shapefiles, Microsoft Excel Spreadsheets, PDF reports, among others). Using this application, we have achieved a very simple management, fast analysis, and a significant reduction of costs. While we were able to classify an average of 55 pictures per hour manually, CTM has made it possible to process over 1000 photographs per hour, consequently retrieving a greater amount of data.
Resumo:
Il lavoro svolto si concentra sullo studio e lo sviluppo dei sistemi software per la gestione dei big data. Inizialmente sono stati analizzati i settori nei quali i big data si stanno diffondendo maggiormente per poi studiare l'ingegnerizzazione e lo sviluppo dei sistemi in grado di gestire questo tipo di dati. Sono state studiate tutte le fasi del processo di realizzazione del software e i rischi e i problemi che si possono incontrare. Infine è stato presentato un software di analisi di big data: Google BigQuery.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
"B-241021"--P. l.
Resumo:
Louisiana Transportation Research Center, Baton Rouge
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.