893 resultados para data analysis: algorithms and implementation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An energy harvesting system requires an energy storing device to store the energy retrieved from the surrounding environment. This can either be a rechargeable battery or a supercapcitor. Due to the limited lifetime of rechargeable batteries, they need to be periodically replaced. Therefore, a supercapacitor, which has ideally a limitless number of charge/discharge cycles can be used to store the energy; however, a voltage regulator is required to obtain a constant output voltage as the supercapacitor discharges. This can be implemented by a Switched-Capacitor DC-DC converter which allows a complete integration in CMOS technology, although it requires several topologies in order to obtain a high efficiency. This thesis presents the complete analysis of four different topologies in order to determine expressions that allow to design and determine the optimum input voltage ranges for each topology. To better understand the parasitic effects, the implementation of the capacitors and the non-ideal effect of the switches, in 130 nm technology, were carefully studied. With these two analysis a multi-ratio SC DC-DC converter was designed with an output power of 2 mW, maximum efficiency of 77%, and a maximum output ripple, in the steady state, of 23 mV; for an input voltage swing of 2.3 V to 0.85 V. This proposed converter has four operation states that perform the conversion ratios of 1/2, 2/3, 1/1 and 3/2 and its clock frequency is automatically adjusted to produce a stable output voltage of 1 V. These features are implemented through two distinct controller circuits that use asynchronous time machines (ASM) to dynamically adjust the clock frequency and to select the active state of the converter. All the theoretical expressions as well as the behaviour of the whole system was verified using electrical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Inf., Diss., 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texte intégral: http://www.springerlink.com/content/3q68180337551r47/fulltext.pdf

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We take stock of the present position of compositional data analysis, of what has beenachieved in the last 20 years, and then make suggestions as to what may be sensibleavenues of future research. We take an uncompromisingly applied mathematical view,that the challenge of solving practical problems should motivate our theoreticalresearch; and that any new theory should be thoroughly investigated to see if it mayprovide answers to previously abandoned practical considerations. Indeed a main themeof this lecture will be to demonstrate this applied mathematical approach by a number ofchallenging examples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of compositional data analysis through log ratio trans-formations corresponds to a multinomial logit model for the shares themselves.This model is characterized by the property of Independence of Irrelevant Alter-natives (IIA). IIA states that the odds ratio in this case the ratio of shares is invariant to the addition or deletion of outcomes to the problem. It is exactlythis invariance of the ratio that underlies the commonly used zero replacementprocedure in compositional data analysis. In this paper we investigate using thenested logit model that does not embody IIA and an associated zero replacementprocedure and compare its performance with that of the more usual approach ofusing the multinomial logit model. Our comparisons exploit a data set that com-bines voting data by electoral division with corresponding census data for eachdivision for the 2001 Federal election in Australia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation in CODAWORK'03, session 4: Applications to archeometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developments in the statistical analysis of compositional data over the last twodecades have made possible a much deeper exploration of the nature of variability,and the possible processes associated with compositional data sets from manydisciplines. In this paper we concentrate on geochemical data sets. First we explainhow hypotheses of compositional variability may be formulated within the naturalsample space, the unit simplex, including useful hypotheses of subcompositionaldiscrimination and specific perturbational change. Then we develop through standardmethodology, such as generalised likelihood ratio tests, statistical tools to allow thesystematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require specialconstruction. We comment on the use of graphical methods in compositional dataanalysis and on the ordination of specimens. The recent development of the conceptof compositional processes is then explained together with the necessary tools for astaying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland.Finally we point out a number of unresolved problems in the statistical analysis ofcompositional processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main instrument used in psychological measurement is the self-report questionnaire. One of its majordrawbacks however is its susceptibility to response biases. A known strategy to control these biases hasbeen the use of so-called ipsative items. Ipsative items are items that require the respondent to makebetween-scale comparisons within each item. The selected option determines to which scale the weight ofthe answer is attributed. Consequently in questionnaires only consisting of ipsative items everyrespondent is allotted an equal amount, i.e. the total score, that each can distribute differently over thescales. Therefore this type of response format yields data that can be considered compositional from itsinception.Methodological oriented psychologists have heavily criticized this type of item format, since the resultingdata is also marked by the associated unfavourable statistical properties. Nevertheless, clinicians havekept using these questionnaires to their satisfaction. This investigation therefore aims to evaluate bothpositions and addresses the similarities and differences between the two data collection methods. Theultimate objective is to formulate a guideline when to use which type of item format.The comparison is based on data obtained with both an ipsative and normative version of threepsychological questionnaires, which were administered to 502 first-year students in psychology accordingto a balanced within-subjects design. Previous research only compared the direct ipsative scale scoreswith the derived ipsative scale scores. The use of compositional data analysis techniques also enables oneto compare derived normative score ratios with direct normative score ratios. The addition of the secondcomparison not only offers the advantage of a better-balanced research strategy. In principle it also allowsfor parametric testing in the evaluation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project a research both in finding predictors via clustering techniques and in reviewing the Data Mining free software is achieved. The research is based in a case of study, from where additionally to the KDD free software used by the scientific community; a new free tool for pre-processing the data is presented. The predictors are intended for the e-learning domain as the data from where these predictors have to be inferred are student qualifications from different e-learning environments. Through our case of study not only clustering algorithms are tested but also additional goals are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the eighties, John Aitchison (1986) developed a new methodological approach for the statistical analysis of compositional data. This new methodology was implemented in Basic routines grouped under the name CODA and later NEWCODA inMatlab (Aitchison, 1997). After that, several other authors have published extensions to this methodology: Marín-Fernández and others (2000), Barceló-Vidal and others (2001), Pawlowsky-Glahn and Egozcue (2001, 2002) and Egozcue and others (2003). (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First discussion on compositional data analysis is attributable to Karl Pearson, in 1897. However, notwithstanding the recent developments on algebraic structure of the simplex, more than twenty years after Aitchison’s idea of log-transformations of closed data, scientific literature is again full of statistical treatments of this type of data by using traditional methodologies. This is particularly true in environmental geochemistry where besides the problem of the closure, the spatial structure (dependence) of the data have to be considered. In this work we propose the use of log-contrast values, obtained by asimplicial principal component analysis, as LQGLFDWRUV of given environmental conditions. The investigation of the log-constrast frequency distributions allows pointing out the statistical laws able togenerate the values and to govern their variability. The changes, if compared, for example, with the mean values of the random variables assumed as models, or other reference parameters, allow definingmonitors to be used to assess the extent of possible environmental contamination. Case study on running and ground waters from Chiavenna Valley (Northern Italy) by using Na+, K+, Ca2+, Mg2+, HCO3-, SO4 2- and Cl- concentrations will be illustrated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: American College of Cardiology/American Heart Association guidelines for the diagnosis and management of heart failure recommend investigating exacerbating conditions such as thyroid dysfunction, but without specifying the impact of different thyroid-stimulation hormone (TSH) levels. Limited prospective data exist on the association between subclinical thyroid dysfunction and heart failure events. METHODS AND RESULTS: We performed a pooled analysis of individual participant data using all available prospective cohorts with thyroid function tests and subsequent follow-up of heart failure events. Individual data on 25 390 participants with 216 248 person-years of follow-up were supplied from 6 prospective cohorts in the United States and Europe. Euthyroidism was defined as TSH of 0.45 to 4.49 mIU/L, subclinical hypothyroidism as TSH of 4.5 to 19.9 mIU/L, and subclinical hyperthyroidism as TSH <0.45 mIU/L, the last two with normal free thyroxine levels. Among 25 390 participants, 2068 (8.1%) had subclinical hypothyroidism and 648 (2.6%) had subclinical hyperthyroidism. In age- and sex-adjusted analyses, risks of heart failure events were increased with both higher and lower TSH levels (P for quadratic pattern <0.01); the hazard ratio was 1.01 (95% confidence interval, 0.81-1.26) for TSH of 4.5 to 6.9 mIU/L, 1.65 (95% confidence interval, 0.84-3.23) for TSH of 7.0 to 9.9 mIU/L, 1.86 (95% confidence interval, 1.27-2.72) for TSH of 10.0 to 19.9 mIU/L (P for trend <0.01) and 1.31 (95% confidence interval, 0.88-1.95) for TSH of 0.10 to 0.44 mIU/L and 1.94 (95% confidence interval, 1.01-3.72) for TSH <0.10 mIU/L (P for trend=0.047). Risks remained similar after adjustment for cardiovascular risk factors. CONCLUSION: Risks of heart failure events were increased with both higher and lower TSH levels, particularly for TSH ≥10 and <0.10 mIU/L.