940 resultados para cytochrome C
Resumo:
The direct electrochemistry of cytochrome c was studied at nanometer-sized rare earth element dioxide particle-modified gold electrodes. It was demonstrated that rare earth element oxides can accelerate the electrochemical reaction of cytochrome c and the reversibility of the electrochemical reaction of cytochrome c was related to the size of rare earth element oxide particles.
Resumo:
The conformational transition of horse heart cytochrome c induced by bromopyrogal red (BPR) in very low concentration has been firstly investigated by dynamic spectroelectrochemical technique, both at the BPR adsorbed platinum gauze electrode and at a bare platinum gauze electrode in a solution containing BPR. The effect of BPR on the structure of cytochrome c was studied by UV-visible and Fourier transform IR spectroscopy. The unfolded cytochrome c behaves simply as an electron transfer protein with a formal potential of -142 mV vs. a normal hydrogen electrode. The difference between the formal potentials of the native and unfolded cytochrome c is coupled to a difference in conformational energy of the two states of about 40 kJ mol(-1), which agrees well with the result reported. The stability and slow refolding of the unfolded cytochrome c are discussed.
Resumo:
Synchronous fluorescence spectra of cytochrome c solutions were studied. It was found that synchronous fluorescence spectra of tyrosine and tryptophan residues in cytochrome c molecules can be separated using different wavelength intervals. The changes in synchronous fluorescence spectra of cytochrome c solutions with the solution pH are different from that of free tyrosine and tryptophan and reflect the pH-induced conformational transitions of cytochrome c molecules. (C) 1995 Academic Press, Inc.
Resumo:
The electrochemistry of cytochrome c was studied at the PVP-modified gold electrode. It was found that the promoter effect is related to the amount of PVP at the gold electrode. From our results, it can be seen that the nitrogen element in the polymer is important for accelerating the electron transfer of cytochrome c.
Resumo:
The states of cytochrome C molecules in aquous solution were studied with synchronous fluorescence spectroscopy, It was found that the synchronous fluorescent spectra of cytochrome C were contributed by tyrosine and tryptophan residues separately at Delta lambda = 20 nm and Delta lambda = 80 nm, The peak position in synchronous fluorescent spectra of tyrosine residues in cytochrome C molecule does not change with its concentration, but that of tryptophan residue changes with its concentration, Only one peak at 340.0 nm was observed in the dilute solution of cytochrome C, With increasing the concentration of cytochrome C, a new peak at 304. 0 nm appeared. The peak at 340.0 nm disappeared and only one peak at 304.0 nm was observed at a higher concentration of cytochrome C, It may originate from the change of aggregation states of cytochrome C molecules and it was considered that the peak at 340.0 nm was attributed to the monomer and peak at 304.0 nm was due to the dimmer or oligomers. When urea was added into cytochrome C solution in which both monomer and dimmer or oligomers exist, cytochrome C molecules do not denature in the range of the specific concentrations of urea. The concentration of monomer of cytochrome C molecules increased and that of aggregation slates decreased by adding urea, Therefore, the synchronous fluorescence spectroscopy can be used to identify monomer and aggregation states of cytochrome C molecules.
Resumo:
The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.
Resumo:
The promoter effect of halogen anions for heterogeneous electron transfer between cytochrome c and a gold electrode was studied. It was found that the order of the promoter ability of halogen anions is I- > Br- > Cl- > F-. In addition, factors which can affect the promoter effect were discussed.
Resumo:
In this work, the adsorption or binding of cytochrome c with 4-pyridyl derivatives modified on the gold electrode was studied. It was found that the concentrations of electrolyte had much influence on the adsorption of cytochrome c. At lower concentration
Resumo:
The electrochemical reactions of cytochrome c were studied at a thiophene-modified gold electrode. It was demonstrated that thiophene is an effective promoter, although there is only one functional group in the molecule. Based on this result, the mechanis
Resumo:
Quasi-reversible and direct electron transfer was observed between an iodide-modified Au electrode and cytochrome c, as well as between cytochrome c in an iodide-containing solution and a bare Au electrode. The results suggest that an electrostatic intera
Resumo:
Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.
Resumo:
The adsorption of bis(4-pyridyl)disulphide (PySSPy) and 4.4'-bipyridyl (PyPy) on a gold electrode was studied using cyclic voltammetry. The adsorption isotherms and equilibrium constants (1 X 10(6) mol-1 l for PyPy and 6 x 10(6) Mol-1 l for PySSPy) were determined. The effect of pH on the electrochemical behaviour of cytochrome c was studied on the PySSPy-modified gold electrode. The results show that cytochrome c can only transfer electrons on a deprotonated electrode surface. When the pH is decreased, the standard heterogeneous rate constant of cytochrome c on the modified gold electrode decreases and the electrochemical behaviour changes from a quasi-reversible to an irreversible process.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.