525 resultados para cyclin
Arresting developments in the cardiac myocyte cell cycle: Role of cyclin-dependent kinase inhibitors
Resumo:
Like most other cells in the body, foetal and neonatal cardiac myocytes are able to divide and proliferate. However, the ability of these cells to undergo cell division decreases progressively during development such that adult myocytes are unable to divide. A major problem arising from this inability of adult cardiac myocytes to proliferate is that the mature heart is unable to regenerate new myocardial tissue following severe injury, e.g. infarction, which can lead to compromised cardiac pump function and even death. Studies in proliferating cells have identified a group of genes and proteins that controls cell division. These proteins include cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors (CDKIs), which interact with each other to form complexes that are essential for controlling normal cell cycle progression. A variety of other proteins, e.g. the retinoblastoma protein (pRb) and members of the E2F family of transcription factors, also can interact with, and modulate the activities of, these complexes. Despite the major role that these proteins play in other cell types, little was known until recently about their existence and activities in immature (proliferating) or mature (non-proliferating) cardiac myocytes. The reason(s) why cardiac myocytes lose their ability to divide during development remains unknown, but if strategies were developed to understand the mechanisms underlying cardiac myocyte growth, it could open up new avenues for the treatment of cardiovascular disease. In this article, we shall review the function of the cell cycle machinery and outline some of our recent findings pertaining to the involvement of the cell cycle in modulating cardiac myocyte growth and hypertrophy.
Resumo:
The objective of this work is to report the antiproliferative effect of P. cupana treatment in Ehrlich Ascites Carcinoma (EAC)-bearing animals. Female mice were treated with three doses of powdered P. cupana (100, 1000 and 2000 mg/kg) for 7 days, injected with 10(5) EAC cells and treated up to day 21. In addition, a survival experiment was carried out with the same protocol. P. cupana decreased the ascites volume (p = 0.0120), cell number (p = 0.0004) and hemorrhage (p = 0.0054). This occurred through a G1-phase arrest (p < 0.01) induced by a decreased gene expression of Cyclin D1 in EAC cells. Furthermore, P. cupana significantly increased the survival of EAC-bearing animals (p = 0.0012). In conclusion, the P. cupana growth control effect in this model was correlated with a decreased expression of cyclin D1 and a G1 phase arrest. These results reinforce the cancer therapeutic potential of this Brazilian plant. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Modified synthetic N-POMC(1-28) without disulfide bridges has been shown to act as an adrenal mitogen. Cyclins and their inhibitors are the major cell cycle controls, but in the adrenal cortex the effect of ACTH and N-POMC on the expression of these proteins remains unclear. In this work, we evaluate the effect of different synthetic N-POMC peptides on the S-phase of the cell cycle. In addition, we examine the cyclin E expression in rat adrenal cortex. Rats treated with dexamethasone were injected with ACTH and/or synthetic modified N-POMC and/or synthetic N-POMC with disulfide bridges. DNA synthesis was determined by BrdU incorporation and protein expression was analyzed by immunoblotting and immunohistochemistry. The results showed that similarly to modified N-POMC without disulfide bridges, administration of synthetic N-POMC with disulfide bridges and the combination of ACTH and N-POMC promoted an increase of BrdU-positive nuclei in adrenal cortex. However, the proliferative effect of N-POMC was comparable to that of ACTH only in the zona glomerulosa. An increase in cyclin E expression was observed 6 h after N-POMC treatment in the outer fraction of the adrenal cortex, in agreement with immunohistochemical findings in the zona glomerulosa. In summary, the effect of synthetic N-POMC with disulfide bridges was similar to modified synthetic N-POMC, increasing proliferation in the adrenal cortex, confirming previous evidence that disulfide bridges are not essential to the N-POMC mitogenic effect. Moreover, cyclin E appears to be involved in the N-POMC- and ACTH-stimulated proliferation in the zona glomerulosa of the adrenal cortex. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.
Resumo:
Realizaram-se dois experimentos para avaliar a eficiência da bohemina e roscovitina associadas à ionomicina para ativação partenogenética e desenvolvimento embrionário inicial de bovinos. No primeiro, foram testadas diferentes concentrações (0, 50, 75 ou 100µM) e diferentes tempos de exposição (2, 4 ou 6 horas) à bohemina ou à roscovitina na ativação de oócitos bovinos maturados in vitro (MIV) pré-expostos à ionomicina. Os melhores tratamentos, bohemina 75µM e roscovitina 50µM, ambos por seis horas, foram utilizados no segundo experimento, no qual oócitos bovinos MIV foram expostos à ionomicina seguido ou não pelo tratamento com inibidores específicos das quinases dependentes de ciclina (CDKI), e avaliados quanto à configuração nuclear, taxa de ativação e desenvolvimento até blastocisto. Os tratamentos combinados (ionomicina+CDKI) apresentaram melhor taxa de ativação (77,3%) e desenvolvimento embrionário inicial (35,2%) do que a ionomicina sozinha (69,4% e 21,9%, respectivamente), e também promoveram ativação mais uniforme (aproximadamente 90% de formação de um pronúcleo). Estes resultados demonstram que os CDKIs potencializam o efeito da ionomicina na ativação e desenvolvimento embrionário inicial e podem auxiliar na obtenção de protocolos de ativação mais eficientes, aumentando a capacidade de desenvolvimento de embriões produzidos por meio de biotécnicas reprodutivas.
Resumo:
It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important rote in tumorigenesis and progression of UADT cancer. To investigate the relationship between CCND1 polymorphism on susceptibility for UADT cancers, 147 cancer and 135 non-cancer subjects were included in this study. CCND1 genotype at codon 242(G870A) in exon 4 was undertaken using denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. Significant odds ratio (OR) of the AA + GA genotypes [OR = 7.5 (95% Cl: 1.4-39.7)] was observed in non-drinkers but for non-smokers a non-significant [OR = 5.4 (95% Cl: 0.9-31.4)] was found in the adjusted model. These results suggest that allele A may be a risk factor for UADT cancer, especially in non-alcoholics. However, further epidemiological studies are needed to establish the exact role of CCND1 polymorphism and the development of UADT cancers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Roscovitine and flavopiridol have been shown to potently inhibit cyclin-dependent kinase 1 and 2 (CDK1 and 2). The structures of CDK2 complexed with roscovitine and deschoroflavopiridol have been reported, however no crystallographic structure is available for complexes of CDK1 with inhibitors. The present work describes two molecular models for the binary complexes CDK1:roscovitine and CDK1:flavopiridol. These structural models indicate that both inhibitors strongly bind to the ATP-binding pocket of CDKI and structural comparison of the CDK complexes correlates the structures with differences in inhibition of these CDKs by flavopiridol and roscovitine. This article explains the structural basis for the observed differences in activity of these inhibitors. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Here is described a structural model for the binary complex CDK5-roscovitine. Roscovitine has been shown to potently inhibit cyclin-dependent kinases 1, 2 and 5 (CDK1, 2, and 5), and the structure of CDK2 complexed with roscovitine has been reported; however, no structural data, are available for complexes of CDK5 with inhibitors. The structural model indicates that roscovitine strongly binds to the ATP-binding pocket of CDK5 and structural comparison of the CDK2-roscovitine complex correlates the structural differences with differences in inhibition of these CDKs by this inhibitor. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures of adenine derivatives. (C) 2002 Elsevier B.V. (USA). All rights reserved.
Resumo:
Flavopiridol has been shown to potently inhibit CDK1 and 2 (cyclin-dependent kinases 1 and 2) and most recently it has been found that it also inhibits CDK9. The complex CDK9-cyclin T1 controls the elongation phase of transcription by RNA polymerase II. The present work describes a molecular model for the binary complex CDK9-flavopiridol. This structural model indicates that the inhibitor strongly binds to the ATP-binding pocket of CDK9 and the structural comparison of the complex CDK2-flavopiridol correlates the structural differences with differences in inhibition of these CDKs by flavopiridol. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known leading structures such as flavones and adenine derivatives. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.