957 resultados para cut yields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contribute to the current understanding of climate impacts on cut flower and foliage growing in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality of fresh-cut carambola (Averrhoa carambola L) is related to many chemical and biochemical variables especially those involved with softening and browning, both influenced by storage temperature. To study these effects, a multivariate analysis was used to evaluate slices packaged in vacuum-sealed polyolefin bags, and stored at 2.5 degrees C, 5 degrees C and 10 degrees C, for up to 16 d. The quality of slices at each temperature was correlated with the duration of storage, O(2) and CO(2) concentration in the package, physical chemical constituents, and activity of enzymes involved in softening (PG) and browning (PPO) metabolism. Three quality groups were identified by hierarchical cluster analysis, and the classification of the components within each of these groups was obtained from a principal component analysis (PCA). The characterization of samples by PCA clearly distinguished acceptable and non-acceptable slices. According to PCA, acceptable slices presented higher ascorbic acid content, greater hue angles ((o)h) and final lightness (L-5) in the first principal component (PC1). On the other hand, non-acceptable slices presented higher total pectin content. PPO activity in the PC1. Non-acceptable slices also presented higher soluble pectin content, increased pectin solubilisation and higher CO(2) concentration in the second principal component (PC2) whereas acceptable slices showed lower total sugar content. The hierarchical cluster and PCA analyses were useful for discriminating the quality of slices stored at different temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With respect to resource management and environmental impact, organic farming offers rationales for agricultural sustainability. However, agronomic productivity is usually higher with conventional farming. This work aimed at investigating two factors of major importance for the agronomic productivity of organic crop husbandry, nitrogen (N) supply through symbiotic N fixation (SNF) and weed occurrence. Perennial red clover-grass leys and spring cereal crops subjected to regular agricultural practices were studied on 34 organic farms located in the southern and the north-western coastal regions of Finland. Herbage growth, clover content as a proportion of the ley and extent of SNF in perennial leys, and the occurrence of weed species and weed-crop competition in spring cereal stands were related to climate conditions, soil properties, and management measures. The herbage accumulated from the first and the second cut of one- and two-year-old leys averaged 7.5 t DM ha-1 (SD ± 1.7 t DM ha-1); the clover content averaged 43.9% (SD ± 18.8%). Along with the clover content, herbage production decreased with ley age. Radiation use efficiency (RUE) correlated positively with clover proportion but despite low clover contents, three-year-old leys were still productive with regard to RUE. SNF in the accumulated annual growth of one- and two-year-old leys averaged 247.5 kg N ha-1 yr-1 (SD ± 114.4 kg N ha-1 yr-1). It was supposed that if red clover-grass leys constituted 40% of the rotation, then the mean N supply by SNF would be able to sustain two or three succeeding cereal crops (green manure and forage ley, respectively), yielding 3.0 to 4.0 t grain ha-1. Being a function of clover biomass, the SNF increased from the first to the second cut and thereafter declined with ley age. Coefficients of variation of clover contents (and SNF) between and within fields were around 50%, which was about twice as high as those of herbage production. The lower were the clover contents, the higher were the within-field variations of clover as a proportion of the ley. Low clover contents in one-year-old leys and increasing variability with ley age suggested that red clover growth was limited by poor establishment and poor overwintering. The proportions of clover in leys were lower and their variability was higher in the northwest than in the south. Soil properties, primarily texture and structure, had a major impact on clover proportion and herbage production, which largely explained regional differences in ley growth. Within-field variability of soil properties can be amended through site-specific measures, including drainage, liming, and applications of organic manures and mineral fertilizers. Overwintering and the persistence of leys can be improved by the choice of winter-hardy varieties, careful establishment and the appropriate harvest regime. Mean grain yields of spring cereal crops amounted to 3.2 t ha-1 in the south and 3.6 t ha-1 in the northwest. At 570 and 565 m-2 for the south and northwest respectively, mean weed densities did not differ between the regions, whereas the respective mean weed biomass of 697 and 1594 kg dry weight ha-1, respectively did differ. Weed abundance varied remarkably between single fields. The number of weed species was higher in the south than in the northwest. For example, Fumaria officinalis and Lamium spp. were found only in the south. Frequencies and abundances of Lapsana communis, Myosotis arvensis, Polygonum aviculare, Tripleurospermum inodorum, and Vicia spp. were higher in the south, whereas those of Elymus repens, Persicaria spp. and Spergula arvensis were higher in the northwest. The number of years since conversion to organic farming, i.e. long-term management, was one of the variables that explained the abundance of single weed species. E. repens was the weed species whose biomass increased most with the duration of organic farming. Another significant variable was crop biomass, which was affected by short-term management. The presence of different weed species was related to the duration of organic farming and to low crop yield. This finding demonstrated that it was not the organic farming regime per se, which resulted in high weed infestation and low yielding crops, but failures in the understanding and the management of organic farming systems. Successful weed control relies on farm- and field-specific long- and short-term management approaches. The agronomic productivity of ley and spring cereal crops managed by full-time farmers with an interest in organic farming was on the same level as of the mean for conventional farming. Given the many options for further improvements of the agronomic performance of organic arable systems, organic farming offers foundations for the development of sustainable agriculture. The main threat to the sustainability of farming in Finland, both conventional and organic, is the spatial separation of crop production and animal husbandry by region, along with the simplification of associated crop rotations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postharvest treatments with nano-silver (NS) significantly improve water relations and therefore prolong the vase life of several cut flowers, including rose (Rosa hybrida cv. Movie Star). The efficacy of NS in alleviating bacterial related blockage in the stem-ends of cut cv. Movie Star was further investigated. Four dominant bacteria strains Pseudomonas fluorescens, Aeromonas sp., Comamonas acidovorans and Chryseomonas luteola were isolated from the stem-ends of cut roses. High numbers of the isolated bacteria at 10 8colony forming unitsmL -1 vase solution led to a sharp reduction in vase life, flower fresh weight, and water uptake. In vitro assessments of the antibacterial activity of NS against the four bacterial strains was >80% at 5mgL -1 and nearly 100% at 50mgL -1. Bacterial blockage in the stem-ends of cut cv. Movie Star roses with and without NS pulse treatments was assessed during the vase period using scanning electron microscopy. Following a 50mgL -1 NS pulse treatment, there were few bacterial cells on the cut surface of the stems even on day 7. Moreover, no obvious bacterial blockage was observed inside the xylem vessels. In contrast, the cut surface of control stems was covered with bacteria and associated amorphous substances, and numerous bacteria were found in the xylem vessels. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms of action of Cu 2+ in improving the longevity of cut flowers and foliage have not been elucidated. Possible antimicrobial action of Cu 2+ against stem end and vase solution colonising bacteria was investigated using Cu 2+ treatments optimised for cut Acacia holosericea A. Cunn. ex G. Don foliage stems. These treatments were a 5h pulse with 2.2mM Cu 2+ or a 0.5mM Cu 2+ vase solution versus a deionised water (no Cu 2+) control. Bacterial growth over time was assessed by a standard plate count agar technique and with scanning electron microscopy. Cu 2+ treatments significantly extended the cut foliage vase life. However, they did not have sustained antibacterial activity against stem end or vase solution colonising bacteria. Also, regular recutting of 1-2cm from the stem ends did not substantially improve either cut stem water relations or longevity. The positive effects of Cu 2+ treatments were unaffected by the repeated stem end recutting. It was concluded that the primary mechanism of Cu 2+ was not antibacterial. Moreover, naturally growing vase solution and stem end microbial populations had relatively insignificant effects on cut A. holosericea vase life. Research into alternative mechanisms of Cu 2+ is required. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative efficacies of three chemically different nano-silver (NS) formulations were evaluated for their potential to extend the vase life of short-lived cut Acacia holosericea foliage. The novel proprietary formulations were neutral NS, acidic NS and ionic NS. They were characterised in terms of particle size, pH value, colour and odour. The NS treatments were applied as vase (lower concentrations) or pulse (higher concentrations) solutions. Among the treatments compared, neutral NS as a 4 mg L-1 vase solution or as a 40 mg L-1 24 h pulse treatment and acidic NS as a 0.5 mg L-1 vase solution or as a 5 mg L-1 24 h pulse treatment significantly (P <= 0.05) extended the vase life of A. holosericea. Vase life extensions over the deionised water (DI) controls were associated with better maintenance of relative fresh weight and vase water uptake, suppression of bacterial growth in the vase water and stem-end, and delaying stem blockage. In contrast, ionic-NS applied as a 0.5 or 1 mg L-1 vase solution treatment or as a 5 or 10 mg L-1 pulse treatment caused severe phytotoxicity to cut A. holosericea stems. The results suggest that NS treatments, especially neutral NS and acidic NS pulse treatments, could be a potential postharvest technology for commercial application to cut A. holosericea. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes and their exopolysaccharides (EPS) can block xylem vessels, thereby increasing the hydraulic resistance and decreasing the vase life of cut flowers and foliage. Scanning electron microscopy (SEM) provides a powerful tool for investigation of bacteria-induced xylem occlusion. However, conventional preparation protocols for SEM involving chemicals can cause loss of hydrated EPS material, and thereby damage the bacterial biofilms during dehydration. A modified chemical fixation protocol involving pre-fixation with 75 mM lysine plus 2.5% glutaraldehyde followed by the normal fixation in 3% glutaraldehyde was, therefore, tested for improved preservation of bacterial biofilm at the stem-ends of cut Acacia holosericea foliage stems. Stem-end segments with different stages of bacterial growth were obtained from stems stood into water. The lysine-based protocol was compared with four other processing protocols of critical point drying (CPD) without fixation (control), freeze-drying (FD), conventional chemical fixation followed by drying with hexamethyldisilazane (HMDS), and conventional chemical fixation with CPD. The non-fixed control. FD and the glutaraldehyde fixation with HMDS drying gave poor preservation of hydrated material, including bacterial EPS. Conventional glutaraldehyde fixation followed by CPD was superior to these three methods in terms of better preserving the EPS. However, this fourth method gave condensation of biofilms during dehydration. In contrast, the modified lysine-based protocol resulted in superior preservation of EPS and biofilm structure. Thus, this fifth method was the most appropriate for examination of bacterial stem-end blockage in cut ornamentals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 1200 wheat and 120 barley experiments conducted in Australia to examine yield responses to applied nitrogen (N) fertiliser are contained in a national database of field crops nutrient research (BFDC National Database). The yield responses are accompanied by various pre-plant soil test data to quantify plant-available N and other indicators of soil fertility status or mineralisable N. A web application (BFDC Interrogator), developed to access the database, enables construction of calibrations between relative crop yield ((Y0/Ymax) × 100) and N soil test value. In this paper we report the critical soil test values for 90% RY (CV90) and the associated critical ranges (CR90, defined as the 70% confidence interval around that CV90) derived from analysis of various subsets of these winter cereal experiments. Experimental programs were conducted throughout Australia’s main grain-production regions in different eras, starting from the 1960s in Queensland through to Victoria during 2000s. Improved management practices adopted during the period were reflected in increasing potential yields with research era, increasing from an average Ymax of 2.2 t/ha in Queensland in the 1960s and 1970s, to 3.4 t/ha in South Australia (SA) in the 1980s, to 4.3 t/ha in New South Wales (NSW) in the 1990s, and 4.2 t/ha in Victoria in the 2000s. Various sampling depths (0.1–1.2 m) and methods of quantifying available N (nitrate-N or mineral-N) from pre-planting soil samples were used and provided useful guides to the need for supplementary N. The most regionally consistent relationships were established using nitrate-N (kg/ha) in the top 0.6 m of the soil profile, with regional and seasonal variation in CV90 largely accounted for through impacts on experimental Ymax. The CV90 for nitrate-N within the top 0.6 m of the soil profile for wheat crops increased from 36 to 110 kg nitrate-N/ha as Ymax increased over the range 1 to >5 t/ha. Apparent variation in CV90 with seasonal moisture availability was entirely consistent with impacts on experimental Ymax. Further analyses of wheat trials with available grain protein (~45% of all experiments) established that grain yield and not grain N content was the major driver of crop N demand and CV90. Subsets of data explored the impact of crop management practices such as crop rotation or fallow length on both pre-planting profile mineral-N and CV90. Analyses showed that while management practices influenced profile mineral-N at planting and the likelihood and size of yield response to applied N fertiliser, they had no significant impact on CV90. A level of risk is involved with the use of pre-plant testing to determine the need for supplementary N application in all Australian dryland systems. In southern and western regions, where crop performance is based almost entirely on in-crop rainfall, this risk is offset by the management opportunity to split N applications during crop growth in response to changing crop yield potential. In northern cropping systems, where stored soil moisture at sowing is indicative of minimum yield potential, erratic winter rainfall increases uncertainty about actual yield potential as well as reducing the opportunity for effective in-season applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n determining vase life (VL), it is often not considered that the measured VL in a particular experiment may greatly depend on both the preharvest and evaluation environmental conditions. This makes the comparison between studies difficult and may lead to erroneous interpretation of results. In this review, we critically discuss the effect of the growth environment on the VL of cut roses. This effect is mainly related to changes in stomatal responsiveness, regulating water loss, whereas cut flower carbohydrate status appears less critical. When comparing cultivars, postharvest water loss and VL often show no correlation, indicating that components such as variation in the tissue resistance to cavitate and/or collapse at low water potential play an important role in the incidence of water stress symptoms. The effect of the growth environment on these components remains unknown. Botrytis cinerea sporulation and infection, as well as cut rose susceptibility to the pathogen are also affected by the growth environment, with the latter being largely unexplored. A huge variability in the choices made with respect to the experimental setup (harvest/conditioning methods, test room conditions and VL terminating symptoms) is reported. We highlight that these decisions, though frequently overlooked, influence the outcome of the study. Specifications for each of these factors are proposed as necessary to achieve a common VL protocol. Documentation of both preharvest conditions and a number of postharvest factors, including the test room conditions, is recommended not only for assisting comparisons between studies, but also to identify factors with major effects on VL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

West Africa is highly vulnerable to climate hazards and better quantification and understanding of the impact of climate change on crop yields are urgently needed. Here we provide an assessment of near-term climate change impacts on sorghum yields in West Africa and account for uncertainties both in future climate scenarios and in crop models. Towards this goal, we use simulations of nine bias-corrected CMIP5 climate models and two crop models (SARRA-H and APSIM) to evaluate the robustness of projected crop yield impacts in this area. In broad agreement with the full CMIP5 ensemble, our subset of bias-corrected climate models projects a mean warming of +2.8 °C in the decades of 2031–2060 compared to a baseline of 1961–1990 and a robust change in rainfall in West Africa with less rain in the Western part of the Sahel (Senegal, South-West Mali) and more rain in Central Sahel (Burkina Faso, South-West Niger). Projected rainfall deficits are concentrated in early monsoon season in the Western part of the Sahel while positive rainfall changes are found in late monsoon season all over the Sahel, suggesting a shift in the seasonality of the monsoon. In response to such climate change, but without accounting for direct crop responses to CO2, mean crop yield decreases by about 16–20% and year-to-year variability increases in the Western part of the Sahel, while the eastern domain sees much milder impacts. Such differences in climate and impacts projections between the Western and Eastern parts of the Sahel are highly consistent across the climate and crop models used in this study. We investigate the robustness of impacts for different choices of cultivars, nutrient treatments, and crop responses to CO2. Adverse impacts on mean yield and yield variability are lowest for modern cultivars, as their short and nearly fixed growth cycle appears to be more resilient to the seasonality shift of the monsoon, thus suggesting shorter season varieties could be considered a potential adaptation to ongoing climate changes. Easing nitrogen stress via increasing fertilizer inputs would increase absolute yields, but also make the crops more responsive to climate stresses, thus enhancing the negative impacts of climate change in a relative sense. Finally, CO2 fertilization would significantly offset the negative climate