937 resultados para crowd noise
Resumo:
Road traffic noise affects the quality of life in the areas adjoining the road. The effect of traffic noise on people is wide ranging and may include sleep disturbance and negative impact on work efficiency. To address the problem of traffic noise, it is necessary to estimate the noise level. For this, a number of noise estimation models have been developed which can estimate noise at the receptor points, based on simple configuration of buildings. However, for a real world situation we have multiple buildings forming built-up area. In such a situation, it is almost impossible to consider multiple diffractions and reflections in sound propagation from the source to the receptor point. An engineering solution to such a real world problem is needed to estimate noise levels in built-up area.
Resumo:
Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.
Resumo:
For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.
Resumo:
In this paper, we present an account of children's interactions with a mobile technology prototype within the school context. The noise detectives trial was conducted in a school setting with the aim of better understanding the role of mobile resources as mediators within science and environmental learning activities. Over 80 children, aged between 10 and 12, completed an outdoor data-gathering activity, using a mobile learning prototype that included paper and software components. They measured and recorded noise levels in various locations throughout the school. We analysed the activity to determine how the components of the prototype were integrated into the learning activity, and to identify differences in behaviour that resulted from using these components. We present design implications that resulted from observed differences in prototype use and appropriation.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented.
Resumo:
Introduction This study is a snapshot of Australian donor motivations and donor barriers to crowdfunding, and provides some indicative recommendations on ways the uptake of crowdfunding in the creative industries might increase. It is based upon a literature review and semi-structured interviews with 17 stakeholders who have used crowdfunding in Australia, including: creative producers seeking funds; financial crowdfunding donors; Artsupport Australia mentors of artists who are using crowdfunding; and crowdfunding site stakeholders. About the report Artsupport Australia commissioned the Queensland University of Technology Creative Industries team to produce a report on trends related to crowdfunding, particularly identifying barriers and motivations that might be associated with it. Artsupport Australia suggested a list of interview candidates, based on those individuals’ knowledge or experience with crowdfunding, to provide a better understanding of perceptions of this emerging practice, and to inform discussions on whether it is a useful revenue generating mechanism for the cultural sector.
Resumo:
MISOGYNY, no matter how it's defined, has become a political football. Fifteen minutes into the first quarter of David Williamson's Managing Carmen and Brent Lyall, a star AFL footballer, has already taken a high tackle from his hottie girlfriend, had a clanger with his manager and been caught wearing women's clothes by his acting coach. Not a good look for Brent's sponsors. By full time, Williamson's witty banter and colourful characters have hit their mark. No wonder he's already working on the screenplay.
Resumo:
Abstraction in its resistance to evident meaning has the capacity to interrupt or at least provide tools with which to question an overly compliant reception of the information to which we are subject. It does so by highlighting a latency or potentiality inherent in materiality that points to the possibility of a critical resistance to this ceaseless flow of sound/image/data. This resistance has been remarked on in differing ways by a number of commentators such as Lyotard, in his exploration of the avant-garde and the sublime for example. This joint paper will initially map the collaborative project by Daniel Mafe and Andrew Brown, Affecting Interference which conjoins painting with digital sound and animations into a single, large scale, immersive exhibition/installation. The work acts as an interstitial point between contrasting approaches to abstraction: the visual and aural, the digital and analogue. The paper will then explore the ramifications of this through the examination of abstraction as ‘noise’, that is as that raw inassimilable materiality, within which lays the creative possibility to forge and embrace the as-yet-unthought and almost-forgotten. It does so by establishing a space for a more poetic and slower paced critical engagement for the viewing and receiving information or data. This slowing of perception through the suspension of easy recognition runs counter to our current ‘high performance’ culture, and it’s requisite demand for speedy assimilation of content, representing instead the poetic encounter with a potentiality or latency inherent in the nameless particularity of that which is.
Resumo:
Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.
Resumo:
This paper proposes a self-tuning feedforward active noise control (ANC) system with online secondary path modeling. The step-size parameters of the controller and modeling filters have crucial rule on the system performance. In literature, these parameters are adjusted by trial-and-error. In other words, they are manually initialized before system starting, which require performing extensive experiments to ensure the convergence of the system. Hence there is no guarantee that the system could perform well under different situations. In the proposed method, the appropriate values for the step-sizes are obtained automatically. Computer simulation results indicate the effectiveness of the proposed method.
Resumo:
In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
As one of the measures for decreasing road traffic noise in a city, the control of the traffic flow and the physical distribution is considered. To conduct the measure effectively, the model for predicting the traffic flow in the citywide road network is necessary. In this study, the existing model named AVENUE was used as a traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model and the sound propagation model, and the new road traffic noise prediction model was established. As a case study, the prediction model was applied to the road network of Tsukuba city in Japan and the noise map of the city was made. To examine the calculation accuracy of the noise map, the calculated values of the noise at the main roads were compared with the measured values. As a result, it was found that there was a possibility that the high accuracy noise map of the city could be made by using the noise prediction model developed in this study.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
An online secondary path modelling method using a white noise as a training signal is required in many applications of active noise control (ANC) to ensure convergence of the system. Not continually injection of white noise during system operation makes the system more desirable. The purposes of the proposed method are two folds: controlling white noise by preventing continually injection, and benefiting white noise with a larger variance. The modelling accuracy and the convergence rate increase when a white noise with larger variance is used, however larger the variance increases the residual noise, which decreases performance of the system. This paper proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm uses the advantages of the white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the system. Comparative simulation results shown in this paper indicate effectiveness of the proposed approach in controlling active noise.