972 resultados para crop system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Os resíduos vegetais das culturas, ao se decomporem, alteram os atributos químicos do solo e, como consequência, influenciam a produtividade das culturas em sucessão. O objetivo deste trabalho foi avaliar os atributos químicos do solo e a produtividade das culturas de soja, milho e arroz, cultivadas no verão, em sucessão a culturas de inverno em semeadura direta. O experimento foi realizado em Jaboticabal-SP (48 ° 18 ' 58 '' W e 21 ° 15 ' 22 '' S), em um Latossolo Vermelho eutrófico. O delineamento experimental foi em blocos ao acaso, no esquema em faixas, com três repetições. Os tratamentos foram constituídos pela combinação de quatro sequências de culturas de verão (monoculturas de milho e soja e rotações soja/milho e arroz/feijão/algodão) com sete culturas de inverno (milho, girassol, nabo forrageiro, milheto, guandu, sorgo e crotalária). Os cultivos iniciaram-se em 2002. Após o manejo das culturas de inverno e antes da semeadura das culturas de verão do ano agrícola 2006/2007, foram coletadas amostras de solo nas camadas de 0-2,5; 2,5-5,0; 5-10; 10-20; e 20-30 cm. Nas amostras de solo, foram determinados: teores de matéria orgânica, pH, teores de P (resina), K, Ca e Mg trocáveis e acidez potencial (H + Al). As sequências de verão rotação soja/milho e milho em monocultura proporcionaram no solo menores teores de matéria orgânica na camada de 0-10 cm e de P do solo na camada de 0-20 cm. Na sequência de verão arroz/feijão/algodão, maiores teores de K foram proporcionados pelas culturas de inverno crotalária e nabo forrageiro, na camada de 0-10 cm, e milheto, na de 0-2,5 cm. Crotalária, milheto, nabo forrageiro e sorgo, cultivados no inverno, proporcionaram maiores teores de matéria orgânica no solo na camada de 0-30 cm. Maiores teores de P no solo foram proporcionados pela crotalária, na camada de 0-2,5 cm, e pelo nabo forrageiro, na de 0-5 cm. Maiores produtividades de soja, como monocultura de verão, foram obtidas após nabo forrageiro e crotalária e, quando em rotação com milho no verão, após nabo forrageiro, crotalária e milheto. Maiores produtividades de milho foram obtidas após nabo forrageiro, milheto e guandu, e menor produtividade de arroz foi obtida após sorgo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measuring shikimic acid accumulation in response to glyphosate applications can be a rapid and accurate way to quantify and predict glyphosate-induced damage to sensitive plants. The objective of this paper was to evaluate the effect of cover crop termination timing by glyphosate application on rice (Oryza sativa L.) yield in a no-till system. A factorial experiment, arranged in a split-plot design, was conducted for 2 yr. Treatments consisted of cover crops (main plots) and timed herbicide applications (subplots) to these cover crops (30, 20, 10, and 0 d before rice planting). There was a decrease in rice yield from 2866 kg ha-1 to 2322 kg ha-1 when the herbicide was applied closer to the rice planting day. Glyphosate application on cover crops increased shikimate concentrations in rice seedlings cultivated under palisade grass (Brachiaria brizantha), signal grass (B. ruziziensis), guinea grass (Panicum maximum), and weedy fallow (spontaneous vegetation) but not under millet (Pennisetum glaucum), which behaved similarly to the control (clean fallow, no glyphosate application). Glyphosate applications in the timing intervals used were associated with stress in the rice plants, and this association increased if cover crops took longer to completely dry and if higher amounts of biomass were produced. Millet, as a cover crop, allowed the highest seedling dry matter for upland rice and the highest rice yield. Our results suggest that using millet as a cover crop, with glyphosate application far from upland rice planting day (10 d or more), was the best option for upland rice under a no-tillage system. © Crop Science Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil physical quality is an important factor for the sustainability of agricultural systems. Thus, the aim of this study was to evaluate soil physical properties and soil organic carbon in a Typic Acrudox under an integrated crop-livestock-forest system. The experiment was carried out in Mato Grosso do Sul, Brazil. Treatments consisted of seven systems: integrated crop-livestock-forest, with 357 trees ha-1 and pasture height of 30 cm (CLF357-30); integrated crop-livestock-forest with 357 trees ha-1 and pasture height of 45 cm (CLF357-45); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 30 cm (CLF227-30); integrated crop-livestock-forest with 227 trees ha-1 and pasture height of 45 cm (CLF227-45); integrated crop-livestock with pasture height of 30 cm (CL30); integrated crop-livestock with pasture height of 45 cm (CL45) and native vegetation (NV). Soil properties were evaluated for the depths of 0-10 and 10-20 cm. All grazing treatments increased bulk density (r b) and penetration resistance (PR), and decreased total porosity (¦t) and macroporosity (¦ma), compared to NV. The values of r b (1.18-1.47 Mg m-3), ¦ma (0.14-0.17 m³ m-3) and PR (0.62-0.81 MPa) at the 0-10 cm depth were not restrictive to plant growth. The change in land use from NV to CL or CLF decreased soil organic carbon (SOC) and the soil organic carbon pool (SOCpool). All grazing treatments had a similar SOCpool at the 0-10 cm depth and were lower than that for NV (17.58 Mg ha-1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DISTRIBUTION OF NITROGEN AMMONIUM SULFATE (N-15) SOIL-PLANT SYSTEM IN A NO-TILLAGE CROP SUCCESSION The N use by maize (Zea mays, L.) is affected by N-fertilizer levels. This study was conducted using a sandy-clay texture soil (Hapludox) to evaluate the efficiency of N use by maize in a crop succession, based on N-15-labeled ammonium sulfate (5.5 atom %) at different rates, and to assess the residual fertilizer effect in two no-tillage succession crops (signalgrass and corn). Two maize crops were evaluated, the first in the growing season 2006, the second in 2007, and brachiaria in the second growing season. The treatments consisted of N rates of 60, 120 and 180 kg ha(-1) in the form of labeled N-15 ammonium sulfate. This fertilizer was applied in previously defined subplots, only to the first maize crop (growing season 2006). The variables total accumulated N; fertilizer-derived N in corn plants and pasture; fertilizer-derived N in the soil; and recovery of fertilizer-N by plants and soil were evaluated. The highest uptake of fertilizer N by corn was observed after application of 120 kg ha(-1) N and the residual effect of N fertilizer on subsequent corn and Brachiaria was highest after application of 180 kg ha(-1) N. After the crop succession, soil N recovery was 32, 23 and 27 % for the respective applications of 60, 120 and 180 kg ha(-1) N.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current studies about nitrous oxide (N2O) emissions from legume crops have raised considerable doubt, observing a high variability between sites (0.03-7.09 kg N2O–N ha−1 y -1) [1]. This high variability has been associated to climate and soil conditions, legume species and soil management practices (e.g. conservation or conventional tillage). Conservation tillage (i.e. no tillage (NT) and minimum tillage (MT)) has spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion and enhancement of carbon (C) sequestration). However, these benefits could be partly counterbalanced by negative effects on the release of N2O emissions. Among processes responsible for N2O production and consumption in soils, denitrification plays an importantrole both in tilled and no-tilled ropping systems [2]. Recently, amplification of functional bacterial genes involved in denitrification is being used to examine denitrifiers abundance and evaluate their influence on N2O emissions. NirK and nirS are functional genes encoding the cytochrome cd1 and copper nitrite reductase, which is the key enzyme regulating the denitrification process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes an automatic expert system for accuracy crop row detection in maize fields based on images acquired from a vision system. Different applications in maize, particularly those based on site specific treatments, require the identification of the crop rows. The vision system is designed with a defined geometry and installed onboard a mobile agricultural vehicle, i.e. submitted to vibrations, gyros or uncontrolled movements. Crop rows can be estimated by applying geometrical parameters under image perspective projection. Because of the above undesired effects, most often, the estimation results inaccurate as compared to the real crop rows. The proposed expert system exploits the human knowledge which is mapped into two modules based on image processing techniques. The first one is intended for separating green plants (crops and weeds) from the rest (soil, stones and others). The second one is based on the system geometry where the expected crop lines are mapped onto the image and then a correction is applied through the well-tested and robust Theil–Sen estimator in order to adjust them to the real ones. Its performance is favorably compared against the classical Pearson product–moment correlation coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.