91 resultados para cotransporter


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the Na+-HCO3- cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin-Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alexandre CS, Braganca AC, Shimizu MH, Sanches TR, Fortes MA, Giorgi RR, Andrade L, Seguro AC. Rosiglitazone prevents sirolimus-induced hypomagnesemia, hypokalemia, and downregulation of NKCC2 protein expression. Am J Physiol Renal Physiol 297: F916-F922, 2009. First published August 5, 2009; doi:10.1152/ajprenal.90256.2008.-Sirolimus, an antiproliferative immunosuppressant, induces hypomagnesemia and hypokalemia. Rosiglitazone activates renal sodiumand water-reabsorptive pathways. We evaluated whether sirolimus induces renal wasting of magnesium and potassium, attempting to identify the tubule segments in which this occurs. We tested the hypothesis that reduced expression of the cotransporter NKCC2 forms the molecular basis of this effect and evaluated the possible association between increased urinary excretion of magnesium and renal expression of the epithelial Mg(2+) channel TRPM6. We then analyzed whether rosiglitazone attenuates these sirolimus-induced tubular effects. Wistar rats were treated for 14 days with sirolimus (3 mg/kg body wt in drinking water), with or without rosiglitazone (92 mg/kg body wt in food). Protein abundance of NKCC2, aquaporin2 (AQP2), and TRPM6 was assessed using immunoblotting. Sirolimus-treated animals presented no change in glomerular filtration rate, although there were marked decreases in plasma potassium and magnesium. Sirolimus treatment reduced expression of NKCC2, and this was accompanied by greater urinary excretion of sodium, potassium, and magnesium. In sirolimus-treated animals, AQP2 expression was reduced. Expression of TRPM6 was increased, which might represent a direct stimulatory effect of sirolimus or a compensatory response. The finding that rosiglitazone prevented or attenuated all sirolimus-induced renal tubular defects has potential clinical implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Little is known about insect intestinal sugar absorption, in spite of the recent findings, and even less has been published regarding water absorption. The aim of this study was to shed light on putative transporters of water and glucose in the insect midgut Glucose and water absorptions by the anterior ventriculus of Dysdercus peruvianus midgut were determined by feeding the insects with a glucose and a non-absorbable dye solution, followed by periodical dissection of insects and analysis of ventricular contents. Glucose absorption decreases glucose/dye ratios and water absorption increases dye concentrations. Water and glucose transports are activated (water 50%, glucose 33%) by 50 mM K(2)SO(4) and are inhibited (water 46%, glucose 82%) by 0.2 mM phloretin, the inhibitor of the facilitative hexose transporter (GLUT) or are inhibited (water 45%, glucose 35%) by 0.1 mM phlorizin, the inhibitor of the Na(+)-glucose cotransporter (SGLT). The results also showed that the putative SGLT transports about two times more water relative to glucose than the putative GLUT. These results mean that D. peruvianus uses a GLUT-like transporter and an SGLT-like transporter (with K(+) instead of Na(+)) to absorb dietary glucose and water. A cDNA library from D. peruvianus midgut was screened and we found one sequence homologous to GLUT1, named DpGLUT, and another to a sodium/solute symporter, named DpSGLT. Semi-quantitative RT-PCR studies revealed that DpGLUT and DpSGLTs mRNA were expressed in the anterior midgut, where glucose and water are absorbed, but not in fat body, salivary gland and Malpighian tubules. This is the first report showing the involvement of putative GLUT and SGLT in both water and glucose midgut absorption in insects. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the transepithelial transport of sodium, glucose, potassium, and water and the mRNA level of the sodium-glucose cotransporter (SGLT1) and the facilitated sugar transporter (GLUT2) in the small intestine of iron-deficient rats. Methods: After 6 wk of receiving diets with low or normal iron content, rats (Wistar-EPM) were subjected to two experiments: 1) evaluation of the transepithelial transport of sodium, glucose, potassium, and water by an ""in vivo"" experimental model of intestinal perfusion and 2) determination of relative SGLT1 and GLUT2 mRNA levels in the proximal, intermediate, and distal portions of the small intestine by the northern blotting technique. Results: Hemoglobin and hepatic iron levels were statistically lower in the anemic rats. The mean transepithelial transports of sodium (-33.0 mu Eq . min(-1) . cm(-1)), glucose (426.0 mu M . min(-1) . cm(-1)), and water (0.4 mu L . min(-1) . cm(-1)) in the small intestine of the anemic rats were significantly lower than in the control group (349.1 mu Eq . min(-1) cm(-1), 842.6 mu M . min(-1) . cm(-1), and 4.3 mu l . min(-1) cm(-1), respectively, P < 0.05). The transepithelial transport of potassium was similar for both groups. The relative SGLT1 mRNA levels of the anemic rats in the intermediate (1.796 +/- 0.659 AU) and distal (1.901 +/- 0.766 AU) segments were significantly higher than the values for the control rats (intermediate 1.262 +/- 0.450 AU, distal 1.244 +/- 0.407 AU). No significant difference was observed for the relative SLGT1 mRNA levels in the proximal segment or for the GLUT2 mRNA levels in all segments. Conclusion: Iron deficiency decreases the absorption of glucose, sodium, and water and increases SGLT1 mRNA in the intermediate and distal segments of the small intestine of rats. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Hypomagnesemia may induce hypercholesterolemia, but the contrary has not been described yet. Thus, magnesium homeostasis was evaluated in rats fed a cholesterol-enriched diet for 8 days. This study has a relevant clinical application if hypomagnesemia, due to hypercholesterolemia, is confirmed in patients with long-term hypercholesterolemia. Methods: Both hypercholesterolemic (HC) and normocholesterolemic rats (NC) were divided into sets of experiments to measure hemodynamic parameters, physiological data, maximum capacity to dilute urine (C-H2O), variations (Delta) in [Ca2+](i) and the expression of transporter proteins. Results: HC developed hypomagnesemia and showed high magnesuria in the absence of hemodynamic abnormalities. However, the urinary sodium excretion and C-H2O in HC was similar to NC. On the other hand, the responses to angiotensin II by measuring Delta [Ca2+](i) were higher in the thick ascending limb of Henle's loop (TAL) of HC than NC. Moreover, high expression of the cotransporter NKCC2 was found in renal outer medulla fractions of HC. Taken together, the hypothesis of impairment in TAL was excluded. Actually, the expression of the epithelial Mg2+ channel in renal cortical membrane fractions was reduced in HC. Conclusion: Impairment in distal convoluted tubule induced by hypercholesterolemia explains high magnesuria and hypomagnesemia observed in HC. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sanches TR, Volpini RA, Massola Shimizu MH, de Bragan a AC, Oshiro-Monreal F, Seguro AC, Andrade L. Sildenafil reduces polyuria in rats with lithium-induced NDI. Am J Physiol Renal Physiol 302: F216-F225, 2012. First published October 12, 2011; doi:10.1152/ajprenal.00439.2010.-Lithium (Li)-treated patients often develop urinary concentrating defect and polyuria, a condition known as nephrogenic diabetes insipidus (NDI). In a rat model of Li-induced NDI, we studied the effect that sildenafil (Sil), a phosphodiesterase 5 (PDE5) inhibitor, has on renal expression of aquaporin-2 (AQP2), urea transporter UT-A1, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-K(+)-2Cl(-) cotransporter (NKCC2), epithelial Na channel (ENaC; alpha-, beta-, and gamma-subunits), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase. We also evaluated cGMP levels in medullary collecting duct cells in suspension. For 4 wk, Wistar rats received Li (40 mmol/kg food) or no treatment (control), some receiving, in weeks 2-4, Sil (200 mg/kg food) or Li and Sil (Li+Sil). In Li+Sil rats, urine output and free water clearance were markedly lower, whereas urinary osmolality was higher, than in Li rats. The cGMP levels in the suspensions of medullary collecting duct cells were markedly higher in the Li+Sil and Sil groups than in the control and Li groups. Semiquantitative immunoblotting revealed the following: in Li+Sil rats, AQP2 expression was partially normalized, whereas that of UT-A1, gamma-ENaC, and eNOS was completely normalized; and expression of NKCC2 and NHE3 was significantly higher in Li rats than in controls. Inulin clearance was normal in all groups. Mean arterial pressure and plasma arginine vasopressin did not differ among the groups. Sil completely reversed the Li-induced increase in renal vascular resistance. We conclude that, in experimental Li-induced NDI, Sil reduces polyuria, increases urinary osmolality, and decreases free water clearance via upregulation of renal AQP2 and UT-A1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings: By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions: SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Oral health complications in diabetes and hypertension include decreased salivary secretion. The sodium-glucose cotransporter 1 (SGLT1) protein, which transports 1 glucose/2 Na+/264 H2O molecules, is described in salivary glands. We hypothesized that changes in SGLT1 expression in the luminal membrane of ductal cell may be related to an altered salivary flow. Findings By immunohistochemistry, we investigated SGLT1 expression in ductal cells of parotid and submandibular glands from Wistar Kyoto rats (WKY), diabetic WKY (WKY-D), spontaneously hypertensive rats (SHR) and diabetic SHR (SHR-D), as well as in parotid glands from WKY subjected to sympathetic stimulation, with or without previous propranolol blockade. Diabetes and hypertension decreased the salivary secretion and increased SGLT1 expression in the luminal membrane of ductal cells, and their association exacerbated the regulations observed. After 30 min of sympathetic stimulation, SGLT1 increased in the luminal membrane of ductal cells, and that was blocked by previous injection of propranolol. Conclusions SGLT1 expression increases in the luminal membrane of salivary gland ductal cells and the salivary flow decreases in diabetic and hypertensive rats, which may be related to sympathetic activity. This study highlights the water transporter role of SGLT1 in salivary glands, which, by increasing ductal water reabsorption, may explain the hyposalivation of diabetic and hypertensive subjects

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die für Metazoen einzigartige Fähigkeit, hochdifferenzierte Silikatstrukturen herzustellen und als Gerüstsubstanz zu verwenden, steht bei den Porifera in einem scheinbaren Gegensatz zu der niedrigen Konzentration an Silizium in dem die Schwämme umgebenden Medium. In der zweiten bedeutenden silikatpolymerisierenden Species, den einzelligen Kieselalgen (Diatomeen), konnte bereits ein Silikattransporter identifiziert werden, dessen Sequenzdaten jedoch aufgrund der phylogenetisch geringen Verwandtschaft der Demospongien mit den Diatomeen keine Verwendung finden konnte Im Zuge der Suche nach einem Silikat-Transportsystem im Schwamm Suberites domuncula wurde ein potentielles Kandidatengen mittels molekularbiologischer Techniken aus einer cDNA Bank des Instituts isoliert, vervollständigt und analysiert. Es zeigte sich, dass dieser Transporter durch seine Sequenzdaten der Familie der Bikarbonattransporter angehörte, und somit membranständig war. Seine Transportfunktion zeigte sich mittels spezifischer Inhibitoren hemmbar. Damit der Schwamm in der Lage ist, eine regulierbare und schnelle Anreicherung von Silikat durchführen zu können, lag eine Annahme einer Induzierbarkeit der Transportergene durch das Substrat Silikat nahe. Mittels Northern-Blot Analyse konnte in einem Primmorphensystem des Schwammes eine Hochregulation der Transkription der Transportergene festgestellt werden. Die Lokalisation der Exprimierung des Transporters innerhalb des Schwammgewebes konnte mittels In situ Hybridisierung untersucht werden und zeigte eine direkte Nähe zu den Polysilikatstrukturen des Schwammes. Um Hinweise auf eine Bifunktionalität des Transporters aufgrund der Ähnlichkeit von Carbonat und Silikat zu erhärten, wurden fluoreszenzmikroskopische Studien an isolierten Zellkulturen des Schwammes durchgeführt. Es kam zu einer intensive Reaktion der Zellen auf Silikat als Substrat. Dieser Effekt konnte nicht nur durch einen spezifischen Transportinhibitor (DIDS) gehemmt werden, sondern zeigt auch eine deutliche Temperaturabhängigkeit. Um den potentiellen Silikattransporter in Zusammenhang mit dem Gesamtmechanismus der Silikatnadelherstellung in Schwämmen zu bringen, wurden zusätzliche elektronenmikroskopische Studien angestellt. Hier konnte zunächst gezeigt werden, wie sich das die Polykondensation auslösende und dirigierende Proteinfilament des Schwammes bei der Nadelbildung entwickelt. Mittels einer darauf folgenden Immunogold-Markierung des Hauptaxialfilamentproteins des Schwammes in elektronenmikroskopischen Gewebepräparaten, konnte dessen Vorkommen nicht nur im Zentrum der Silikatnadel, sondern auch in den die Nadel umgebenden Strukturen nachgewiesen werden