955 resultados para copper soil contamination
Resumo:
This paper aims to survey metal concentrations in soils in the vicinity of a coal-firedpower plant located in southwest of Portugal. Two annual sampling campaigns were carried out to measure a hypothetical soil contamination around the coal plant. The sampling area was divided into two subareas, both centered in the emission source, delimited by two concentric circles with radius of 6 km and 20 km. About 40 samplings points were defined in the influence area. Metals measurements were performed with a portable analytical X-ray dispersive energy fluorescence spectrometer identifying about 20 different elements in each sampling point. The most relevant elements measured included As, Cu, Fe, Hg, Pb, Ti and Zn in both sampling areas. Considering the results obtained in the first sampling campaign, arsenic is predominantly higher within the 6-20 km sampling area. The second sampling campaign showed that both sampling areas presented relatively similar metal concentrations except for Fe, Mn, Sr and Zn which concentration is higher within the 6-20 km sampling area. Also, As, Fe, Mn and Ti concentrations decreased significantly from the first to the second sampling campaign and their concentration were predominately higher in the NE-E and E-SE directions.
Resumo:
La phytoextraction représente une solution environnementale prometteuse face au problème de contamination des sols en éléments traces (É.T). La présente étude s’intéresse aux différences intra et interspécifiques (S. purpurea, S. dasyclados, S. miyabeana) de trois cultivars de saule lorsqu’ils sont utilisés pour la phytoextration de six É.T. (As, Cd, Cu, Ni, Pb et Zn). Les objectifs sont (i) décrire les variations intrapécifiques du cultivar FISH CREEK (S. purpurea) lorsqu’il est utilisé pour la phytoextraction sur deux sites d’étude; et (ii) décrire les variations intra et interspécifiques des cultivars FISH CREEK (S. purpurea), SV1 (S. dasyclados) et SX67 (S. miyabeana) lorsqu’ils sont utilisés pour la phytoextraction d’un site d’étude. Les indicateurs de variations intra et interspécifiques sélectionnés sont les suivants : la biomasse totale, les concentrations en É.T. extraits et les facteurs de translocation (x ̅ pondérée des conc. É.T. dans les parties aériennes / conc. É.T. dans les racines). La contribution des propriétés du sol (degré de contamination, caractéristiques physicochimiques) à la phytoextraction a été évaluée. Les cultivars ont présenté des variations interspécifiques significatives. Cependant, les variations intraspécifiques sur un site d’étude étaient parfois plus importantes que celles mesurées entre les trois différents cultivars. L’amplitude des variations intraspécifiques que présentent le cultivar FISH CREEK sur deux sites d’étude est attribuée à l’influence du pH, de la minéralogie et au contenu en matière organique, lesquelles diffèrent entre les deux sites. Il a aussi été démontré que la phytoextraction des É.T. n’était pas systématiquement corrélée de façon positive avec le degré de contamination. Cela suggère que les concentrations en É.T. mesurées dans le sol ne peuvent pas expliquer à elles seules la variation des concentrations mesurées dans les tissus. L’implication des mécanismes de rétention dans le sol semblent être davantage responsable des variations observées. La compartimentation des É.T. suggère que le saule est efficace pour l’extraction du Cd et du Zn et qu’il est efficace pour la phytostabilisation de l’As, du Cu, du Ni, et du Pb. En ce qui concerne les quantités extraites, le cultivar FISH CREEK semble le plus performant dans la présente étude.
Resumo:
In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This chapter contains sections titled: Introduction Geogenic Occurrence Sources of Soil Contamination Chemical Behaviour in Soils Risks from Tin and Mercury in Soils References
Resumo:
Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models
Resumo:
Today a major responsibility for the contamination of soil and groundwater and surface water are establishments known as gas stations of fuel which has attracted increasing attention from both the general population as the state agencies of environmental control due to leaks in storage tanks and mainly to disruption of pipe corrosion of tanks and pumping. Other services, like oil changes and car wash are also causes for concern in this type of establishment. These leaks can cause or waste produced, and the contamination of aquifers, serious health problems and public safety, since most of these stations located in urban areas. Based on this, the work was to evaluate soil contamination of a particular service station and fuel sales in the city of Natal, through the quantification of heavy metals like Cd, Cu, Cr, Ni, Pb, Zn of total organic carbon (TOC) and organic matter using different techniques such as optical emission spectrometry with inductively coupled plasma source (ICP OES), Total Organic Carbon analyzer and gravimetric analysis respectively. And also to characterize the soil through particle size analysis. Samples were taken in 21 georeferenced points and collected in the same period. The soils sampled in sampling stations P3, P5, P6, P10, P11, P12, P13, P14, P15, P17, P18 and P20 showed the smallest size fractions ranging from fine sand to medium sand. The other study sites ranged from fine sand to medium sand, except the point P8 showed that only the type size medium sand and P19, indicating a particle size of the coarse type. The small correlation of organic matter with the elements studied in this work suggests that these are not of anthropogenic origin but geochemical support
Resumo:
As maiores limitações para o uso do lodo de esgoto em áreas agrícolas são os riscos de contaminação do solo com metais pesados e sua possível transferência para a cadeia alimentar. Objetivou-se, com este estudo, avaliar os teores de Cd, Cr, Pb e Zn no solo, utilizando-se dois métodos de extração (HNO3 + H2O2 + HCl e HClO4 + HF), o acúmulo destes elementos em plantas de milho cultivadas em Latossolo Vermelho eutroférrico no nono ano de aplicação de lodo de esgoto, bem como seus efeitos na produção de matéria seca e na produtividade de grãos. O experimento foi instalado em condições de campo em Jaboticabal-SP, no delineamento em blocos casualizados, com quatro tratamentos e cinco repetições. Os tratamentos corresponderam a doses acumuladas por nove anos consecutivos de lodo de esgoto (45,0; 90,0 e 127,5 t ha-1, base seca) e um tratamento testemunha que recebeu fertilização mineral com base na análise de solo. O lodo de esgoto foi aplicado manualmente e incorporado ao solo com grade a 0,1 m de profundidade antes da semeadura do milho. Os teores médios de Cd no solo não variaram em função das doses de lodo e dos métodos de extração. Por outro lado, os teores médios de Cr, Pb e Zn no solo obtidos pela digestão com HClO4 + HF foram de 72,4; 31,8 e 62,3 %, respectivamente, superiores àqueles encontrados pela digestão que empregou HNO3 + H2O2 + HCl. Contudo, quando se avaliou apenas o efeito das doses de lodo no solo, em ambos os métodos de extração, verificou-se diferença entre os tratamentos apenas para a concentração de Zn no solo. Exceto o Cd, que não foi detectado, de modo geral, os teores e os acúmulos de Cr, Pb e Zn nas partes das plantas de milho aumentaram com as aplicações de lodo de esgoto. Os teores de Cr, Pb e Zn nos grãos, quando detectados, permaneceram abaixo dos limites máximos estabelecidos para o consumo humano conforme a legislação brasileira. A adição de lodo de esgoto e a fertilização mineral, por longo período, apresentaram efeitos semelhantes na produção de matéria seca e na produtividade de grãos de milho.
Resumo:
The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)
Resumo:
The petroleum industry deals with problems which are difficult to solve because of their relation to environmental issues. This is because amounts of residue are generated which vary in type and danger level. The soil contamination by non aqueous liquid phase mixtures, specifically hydrocarbon petroleum has been a reason for great concern, mainly the aromatic and polycyclic aromatic, which present risk to human health due to its carcinogenic and mutagenic character. The Advanced Oxidative Processes (AOP) are efficient technologies for destruction of organic compounds of difficult degradation and, often, they are present in low concentrations. They can be considered clean technologies, because there is no formation of solid by-products or the transfer of pollutor phases. This work focuses on the study of the degradation of petroleum industrial waste, by Advanced Oxidation Processes. Treatments tackling petroleum residues, contaminated soil, and water occurring in the production of petroleum reached the following Polycyclic Aromatic Hydrocarbons (PAH) degradation levels: solid residues 100% in 96 treatment hours; water residue - 100% in 6 treatment hours; soil contamination (COT degradation) - 50.3% in 12 treatment hours. AOP were effective in dealing with petroleum residues thus revealing themselves to be a promising treatment alternative
Resumo:
Soil contamination by pesticides is an environmental problem that needs to be monitored and avoided. However, the lack of fast, accurate and low cost analytical methods for discovering residual pesticide in complex matrices, such as soil, is a problem still unresolved. This problem needs to be solved before we are able to assess the quality of environmental samples. The intensive use of pesticides has increased since the 60s, because the dependence of their use, causing biological imbalances and promoting resistance and recurrence of high populations of pests and pathogens (upwelling). This has contributed to the appearance of new pests that were previously under natural control. To develop analytical methods that are able to quantify residues pesticide in complex environment. It is still a challenge for many laboratories. The integration of two analytical methods one ecotoxicological and another chemical demonstrates the potential for environmental analysis of methamidophos. The aim of this study was to evaluate an ecotoxicological method as "screening" analytical methamidophos in the soil and perform analytical confirmation in the samples of the concentration of the analyte by chemical method LC-MS/MS In this work we tested two soils: a clayey and sandy, both in contact with the kinetic methamidophos model followed pseudo-second order. The clay soil showed higher absorption of methamidophos and followed the Freundlich model, while the sandy, the Langmuir model. The chemical method was validated LC-MS/MS satisfactory, showing all parameters of linearity, range, precision, accuracy, and sensitivity adequate. In chronic ecotoxicological tests with C. dubia, the NOEC was 4.93 and 3.24 for ng L-1 of methamidophos to elutriate assays of sandy and clay soils, respectively. The method for ecotoxicological levels was more sensitive than LC-MS/MS detection of methamidophos, loamy and sandy soils. However, decreasing the concentration of the standard for analytical methamidophos and adjusting for the validation conditions chemical acquires a limit of quantification (LOQ) in ng L-1, consistent with the provisions of ecotoxicological test. The methods described should be used as an analytical tool for methamidophos in soil, and the ecotoxicological analysis can be used as a "screening" and LC-MS/MS as confirmatory analysis of the analyte molecule, confirming the objectives of this work
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This investigation was carried out in Patrocínio Paulista municipality, located in the state of São Paulo, Brazil. Sugarcane has been extensively cultivated in the area in order to be utilized by the sugar and ethanol industries. The major effluent from the ethanol industry, vinasse, has been applied in the sugarcane fields as an alternative to supply several nutrients in crop production. Because it may represent a major environmental problem in that area, with implications to human health, soil samples from six points were collected and analyzed in order to evaluate the main factors related to the vinasse application in the ground. The importance of clays, iron oxides, organic matter and minor refractory minerals was also considered for explaining several relationships identified from the acquired data. © 2009 WIT Press.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)