903 resultados para convergence of numerical methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel numerical methods for the exponential models of growth are proposed. Based on these methods, hybrid predictor-corrector methods are constructed. The hybrid numerical methods can increase the accuracy and the computing speed obviously, as well as enlarge the stability domain greatly. (c) 2005 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kineticist's Workbench is a computer program currently under development whose purpose is to help chemists understand, analyze, and simplify complex chemical reaction mechanisms. This paper discusses one module of the program that numerically simulates mechanisms and constructs qualitative descriptions of the simulation results. These descriptions are given in terms that are meaningful to the working chemist (e.g., steady states, stable oscillations, and so on); and the descriptions (as well as the data structures used to construct them) are accessible as input to other programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

KAM is a computer program that can automatically plan, monitor, and interpret numerical experiments with Hamiltonian systems with two degrees of freedom. The program has recently helped solve an open problem in hydrodynamics. Unlike other approaches to qualitative reasoning about physical system dynamics, KAM embodies a significant amount of knowledge about nonlinear dynamics. KAM's ability to control numerical experiments arises from the fact that it not only produces pictures for us to see, but also looks at (sic---in its mind's eye) the pictures it draws to guide its own actions. KAM is organized in three semantic levels: orbit recognition, phase space searching, and parameter space searching. Within each level spatial properties and relationships that are not explicitly represented in the initial representation are extracted by applying three operations ---(1) aggregation, (2) partition, and (3) classification--- iteratively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we perform an analytical and numerical study of Extreme Value distributions in discrete dynamical systems. In this setting, recent works have shown how to get a statistics of extremes in agreement with the classical Extreme Value Theory. We pursue these investigations by giving analytical expressions of Extreme Value distribution parameters for maps that have an absolutely continuous invariant measure. We compare these analytical results with numerical experiments in which we study the convergence to limiting distributions using the so called block-maxima approach, pointing out in which cases we obtain robust estimation of parameters. In regular maps for which mixing properties do not hold, we show that the fitting procedure to the classical Extreme Value Distribution fails, as expected. However, we obtain an empirical distribution that can be explained starting from a different observable function for which Nicolis et al. (Phys. Rev. Lett. 97(21): 210602, 2006) have found analytical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the two-dimensional Helmholtz equation with constant coefficients on a domain with piecewise analytic boundary, modelling the scattering of acoustic waves at a sound-soft obstacle. Our discretisation relies on the Trefftz-discontinuous Galerkin approach with plane wave basis functions on meshes with very general element shapes, geometrically graded towards domain corners. We prove exponential convergence of the discrete solution in terms of number of unknowns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O desenvolvimento de projetos relacionados ao desempenho de diversas culturas tem recebido aperfeiçoamento cada vez maior, incorporado a modelos matemáticos sendo indispensável à utilização de equações cada vez mais consistentes que possibilitem previsão e maior aproximação do comportamento real, diminuindo o erro na obtenção das estimativas. Entre as operações unitárias que demandam maior estudo estão aquelas relacionadas com o crescimento da cultura, caracterizadas pela temperatura ideal para o acréscimo de matéria seca. Pelo amplo uso dos métodos matemáticos na representação, análise e obtenção de estimativas de graus-dia, juntamente com a grande importância que a cultura da cana-de-açúcar tem para a economia brasileira, foi realizada uma avaliação dos modelos matemáticos comumente usados e dos métodos numéricos de integração na estimativa da disponibilidade de graus-dia para essa cultura, na região de Botucatu, Estado de São Paulo. Os modelos de integração, com discretização de 6 em 6 h, apresentaram resultados satisfatórios na estimativa de graus-dia. As metodologias tradicionais apresentaram desempenhos satisfatórios quanto à estimativa de grausdia com base na curva de temperatura horária para cada dia e para os agrupamentos de três, sete, 15 e 30 dias. Pelo método numérico de integração, a região de Botucatu, Estado de São Paulo, apresentou disponibilidade térmica anual média de 1.070,6 GD para a cultura da cana-de-açúcar.