845 resultados para constraint optimization
Resumo:
Rolling Isolation Systems provide a simple and effective means for protecting components from horizontal floor vibrations. In these systems a platform rolls on four steel balls which, in turn, rest within shallow bowls. The trajectories of the balls is uniquely determined by the horizontal and rotational velocity components of the rolling platform, and thus provides nonholonomic constraints. In general, the bowls are not parabolic, so the potential energy function of this system is not quadratic. This thesis presents the application of Gauss's Principle of Least Constraint to the modeling of rolling isolation platforms. The equations of motion are described in terms of a redundant set of constrained coordinates. Coordinate accelerations are uniquely determined at any point in time via Gauss's Principle by solving a linearly constrained quadratic minimization. In the absence of any modeled damping, the equations of motion conserve energy. This mathematical model is then used to find the bowl profile that minimizes response acceleration subject to displacement constraint.
Resumo:
Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.
Resumo:
Topology optimization of linear elastic continuum structures is a challenging problem when considering local stress constraints. The reasons are the singular behavior of the constraint with the density design variables, combined with the large number of constraints even for small finite element meshes. This work presents an alternative formulation for the s-relaxation technique, which provides an workaround for the singularity of the stress constraint. It also presents a new global stress constraint formulation. Derivation of the sensitivities for the constraint by the adjoint method is shown. Results for single and multiple load cases show the potential of the new formulation.
Resumo:
La programmation par contraintes est une technique puissante pour résoudre, entre autres, des problèmes d’ordonnancement de grande envergure. L’ordonnancement vise à allouer dans le temps des tâches à des ressources. Lors de son exécution, une tâche consomme une ressource à un taux constant. Généralement, on cherche à optimiser une fonction objectif telle la durée totale d’un ordonnancement. Résoudre un problème d’ordonnancement signifie trouver quand chaque tâche doit débuter et quelle ressource doit l’exécuter. La plupart des problèmes d’ordonnancement sont NP-Difficiles. Conséquemment, il n’existe aucun algorithme connu capable de les résoudre en temps polynomial. Cependant, il existe des spécialisations aux problèmes d’ordonnancement qui ne sont pas NP-Complet. Ces problèmes peuvent être résolus en temps polynomial en utilisant des algorithmes qui leur sont propres. Notre objectif est d’explorer ces algorithmes d’ordonnancement dans plusieurs contextes variés. Les techniques de filtrage ont beaucoup évolué dans les dernières années en ordonnancement basé sur les contraintes. La proéminence des algorithmes de filtrage repose sur leur habilité à réduire l’arbre de recherche en excluant les valeurs des domaines qui ne participent pas à des solutions au problème. Nous proposons des améliorations et présentons des algorithmes de filtrage plus efficaces pour résoudre des problèmes classiques d’ordonnancement. De plus, nous présentons des adaptations de techniques de filtrage pour le cas où les tâches peuvent être retardées. Nous considérons aussi différentes propriétés de problèmes industriels et résolvons plus efficacement des problèmes où le critère d’optimisation n’est pas nécessairement le moment où la dernière tâche se termine. Par exemple, nous présentons des algorithmes à temps polynomial pour le cas où la quantité de ressources fluctue dans le temps, ou quand le coût d’exécuter une tâche au temps t dépend de t.
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.
Resumo:
Efficient hill climbers have been recently proposed for single- and multi-objective pseudo-Boolean optimization problems. For $k$-bounded pseudo-Boolean functions where each variable appears in at most a constant number of subfunctions, it has been theoretically proven that the neighborhood of a solution can be explored in constant time. These hill climbers, combined with a high-level exploration strategy, have shown to improve state of the art methods in experimental studies and open the door to the so-called Gray Box Optimization, where part, but not all, of the details of the objective functions are used to better explore the search space. One important limitation of all the previous proposals is that they can only be applied to unconstrained pseudo-Boolean optimization problems. In this work, we address the constrained case for multi-objective $k$-bounded pseudo-Boolean optimization problems. We find that adding constraints to the pseudo-Boolean problem has a linear computational cost in the hill climber.
Resumo:
Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research.
Resumo:
Declarative techniques such as Constraint Programming can be very effective in modeling and assisting management decisions. We present a method for managing university classrooms which extends the previous design of a Constraint-Informed Information System to generate the timetables while dealing with spatial resource optimization issues. We seek to maximize space utilization along two dimensions: classroom use and occupancy rates. While we want to maximize the room use rate, we still need to satisfy the soft constraints which model students’ and lecturers’ preferences. We present a constraint logic programming-based local search method which relies on an evaluation function that combines room utilization and timetable soft preferences. Based on this, we developed a tool which we applied to the improvement of classroom allocation in a University. Comparing the results to the current timetables obtained without optimizing space utilization, the initial versions of our tool manages to reach a 30% improvement in space utilization, while preserving the quality of the timetable, both for students and lecturers.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
Combinatorial decision and optimization problems belong to numerous applications, such as logistics and scheduling, and can be solved with various approaches. Boolean Satisfiability and Constraint Programming solvers are some of the most used ones and their performance is significantly influenced by the model chosen to represent a given problem. This has led to the study of model reformulation methods, one of which is tabulation, that consists in rewriting the expression of a constraint in terms of a table constraint. To apply it, one should identify which constraints can help and which can hinder the solving process. So far this has been performed by hand, for example in MiniZinc, or automatically with manually designed heuristics, in Savile Row. Though, it has been shown that the performances of these heuristics differ across problems and solvers, in some cases helping and in others hindering the solving procedure. However, recent works in the field of combinatorial optimization have shown that Machine Learning (ML) can be increasingly useful in the model reformulation steps. This thesis aims to design a ML approach to identify the instances for which Savile Row’s heuristics should be activated. Additionally, it is possible that the heuristics miss some good tabulation opportunities, so we perform an exploratory analysis for the creation of a ML classifier able to predict whether or not a constraint should be tabulated. The results reached towards the first goal show that a random forest classifier leads to an increase in the performances of 4 different solvers. The experimental results in the second task show that a ML approach could improve the performance of a solver for some problem classes.
Resumo:
Insulin was used as model protein to developed innovative Solid Lipid Nanoparticles (SLNs) for the delivery of hydrophilic biotech drugs, with potential use in medicinal chemistry. SLNs were prepared by double emulsion with the purpose of promoting stability and enhancing the protein bioavailability. Softisan(®)100 was selected as solid lipid matrix. The surfactants (Tween(®)80, Span(®)80 and Lipoid(®)S75) and insulin were chosen applying a 2(2) factorial design with triplicate of central point, evaluating the influence of dependents variables as polydispersity index (PI), mean particle size (z-AVE), zeta potential (ZP) and encapsulation efficiency (EE) by factorial design using the ANOVA test. Therefore, thermodynamic stability, polymorphism and matrix crystallinity were checked by Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD), whereas the effect of toxicity of SLNs was check in HepG2 and Caco-2 cells. Results showed a mean particle size (z-AVE) width between 294.6 nm and 627.0 nm, a PI in the range of 0.425-0.750, ZP about -3 mV, and the EE between 38.39% and 81.20%. After tempering the bulk lipid (mimicking the end process of production), the lipid showed amorphous characteristics, with a melting point of ca. 30 °C. The toxicity of SLNs was evaluated in two distinct cell lines (HEPG-2 and Caco-2), showing to be dependent on the concentration of particles in HEPG-2 cells, while no toxicity in was reported in Caco-2 cells. SLNs were stable for 24 h in in vitro human serum albumin (HSA) solution. The resulting SLNs fabricated by double emulsion may provide a promising approach for administration of protein therapeutics and antigens.
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
The androgynophore column, a distinctive floral feature in passion flowers, is strongly crooked or bent in many Passiflora species pollinated by bats. This is a floral feature that facilitates the adaptation to bat pollination. Crooking or bending of plant organs are generally caused by environmental stimulus (e.g. mechanical barriers) and might involve the differential distribution of auxin. Our aim was to study the role of the perianth organs and the effect of auxin in bending of the androgynophore of the bat-pollinated species Passiflora mucronata. Morpho-anatomical characterisation of the androgynophore, including measurements of curvature angles and cell sizes both at the dorsal (convex) and ventral (concave) sides of the androgynophore, was performed on control flowers, flowers from which perianth organs were partially removed and flowers treated either with auxin (2,4-dichlorophenoxyacetic acid; 2,4-D) or with an inhibitor of auxin polar transport (naphthylphthalamic acid; NPA). Asymmetric growth of the androgynophore column, leading to bending, occurs at a late stage of flower development. Removing the physical constraint exerted by perianth organs or treatment with NPA significantly reduced androgynophore bending. Additionally, the androgynophores of plants treated with 2,4-D were more curved when compared to controls. There was a larger cellular expansion at the dorsal side of the androgynophores of plants treated with 2,4-D and in both sides of the androgynophores of plants treated with NPA. This study suggests that the physical constraint exerted by perianth and auxin redistribution promotes androgynophore bending in P. mucronata and might be related to the evolution of chiropterophily in the genus Passiflora.
Resumo:
Objective: The biochemical alterations between inflammatory fibrous hyperplasia (IFH) and normal tissues of buccal mucosa were probed by using the FT-Raman spectroscopy technique. The aim was to find the minimal set of Raman bands that would furnish the best discrimination. Background: Raman-based optical biopsy is a widely recognized potential technique for noninvasive real-time diagnosis. However, few studies had been devoted to the discrimination of very common subtle or early pathologic states as inflammatory processes that are always present on, for example, cancer lesion borders. Methods: Seventy spectra of IFH from 14 patients were compared with 30 spectra of normal tissues from six patients. The statistical analysis was performed with principal components analysis and soft independent modeling class analogy cross-validated, leave-one-out methods. Results: Bands close to 574, 1,100, 1,250 to 1,350, and 1,500 cm(-1) (mainly amino acids and collagen bands) showed the main intragroup variations that are due to the acanthosis process in the IFH epithelium. The 1,200 (C-C aromatic/DNA), 1,350 (CH(2) bending/collagen 1), and 1,730 cm(-1) (collagen III) regions presented the main intergroup variations. This finding was interpreted as originating in an extracellular matrix-degeneration process occurring in the inflammatory tissues. The statistical analysis results indicated that the best discrimination capability (sensitivity of 95% and specificity of 100%) was found by using the 530-580 cm(-1) spectral region. Conclusions: The existence of this narrow spectral window enabling normal and inflammatory diagnosis also had useful implications for an in vivo dispersive Raman setup for clinical applications.