711 resultados para computer literacy
Resumo:
Career Academy instructors’ technical literacy is vital to the academic success of students. This nonexperimental ex post facto study examined the relationships between the level of technical literacy of instructors in career academies and student academic performance. It was also undertaken to explore the relationship between the pedagogical training of instructors and the academic performance of students. Out of a heterogeneous population of 564 teachers in six targeted schools, 136 teachers (26.0 %) responded to an online survey. The survey was designed to gather demographic and teaching experience data. Each demographic item was linked by researchers to teachers’ technology use in the classroom. Student achievement was measured by student learning gains as assessed by the reading section of the FCAT from the previous to the present school year. Linear and hierarchical regressions were conducted to examine the research questions. To clarify the possibility of teacher gender and teacher race/ethnic group differences by research variable, a series of one-way ANOVAs were conducted. As revealed by the ANOVA results, there were not statistically significant group differences in any of the research variables by teacher gender or teacher race/ethnicity. Greater student learning gains were associated with greater teacher technical expertise integrating computers and technology into the classroom, even after controlling for teacher attitude towards computers. Neither teacher attitude toward technology integration nor years of experience in integrating computers into the curriculum significantly predicted student learning gains in the regression models. Implications for HRD theory, research, and practice suggest that identifying teacher levels of technical literacy may help improve student academic performance by facilitating professional development strategies and new parameters for defining highly qualified instructors with 21st century skills. District professional development programs can benefit by increasing their offerings to include more computer and information communication technology courses. Teacher preparation programs can benefit by including technical literacy as part of their curriculum. State certification requirements could be expanded to include formal surveys to assess teacher use of technology.
Resumo:
The issues influencing student engagement with high-stakes computer-based exams were investigated, drawing on feedback from two cohorts of international MA Education students encountering this assessment method for the first time. Qualitative data from surveys and focus groups on the students’ examination experience were analysed, leading to the identification of engagement issues in the delivery of high-stakes computer-based assessments.The exam combined short-answer open-response questions with multiple-choice-style items to assess knowledge and understanding of research methods. The findings suggest that engagement with computer-based testing depends, to a lesser extent, on students’ general levels of digital literacy and, to a greater extent, on their information technology (IT) proficiency for assessment and their ability to adapt their test-taking strategies, including organisational and cognitive strategies, to the online assessment environment. The socialisation and preparation of students for computer-based testing therefore emerge as key responsibilities for instructors to address, with students requesting increased opportunities for practice and training to develop the IT skills and test-taking strategies necessary to succeed in computer-based examinations. These findings and their implications in terms of instructional responsibilities form the basis of a proposal for a framework for Learner Engagement with e-Assessment Practices.
Resumo:
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
Nowadays, digital computer systems and networks are the main engineering tools, being used in planning, design, operation, and control of all sizes of building, transportation, machinery, business, and life maintaining devices. Consequently, computer viruses became one of the most important sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus programs have been developed, but they are limited to detecting and removing infections, based on previous knowledge of the virus code. In spite of having good adaptation capability, these programs work just as vaccines against diseases and are not able to prevent new infections based on the network state. Here, a trial on modeling computer viruses propagation dynamics relates it to other notable events occurring in the network permitting to establish preventive policies in the network management. Data from three different viruses are collected in the Internet and two different identification techniques, autoregressive and Fourier analyses, are applied showing that it is possible to forecast the dynamics of a new virus propagation by using the data collected from other viruses that formerly infected the network. Copyright (c) 2008 J. R. C. Piqueira and F. B. Cesar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
Scientific literacy can be considered as a new demand of post-industrial society. It seems necessary in order to foster education for sustainability throughout students` academic careers. Universities striving to teach sustainability are being challenged to integrate a holistic perspective into a traditional undergraduate curriculum, which aims at specialization. This new integrative, inter- and transdisciplinary epistemological approach is necessary to cultivate autonomous citizenship, i.e., that each citizen be prepared to understand and participate in discussions about the complex contemporary issues posed by post-industrial society. This paper presents an epistemological framework to show the role of scientific literacy in fostering education for sustainability. We present a set of 26 collaborative concept maps (CCmaps) in order to illustrate an instance of theory becoming practice. During a required course for first-year undergraduate students (ACH 0011, Natural Sciences), climate change was presented and discussed in broad perspective by using CCmaps. We present students` CCmaps to show how they use concepts from quantitative and literacy disciplines to deal with the challenges posed by the need of achieving a sustainable development. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A two-dimensional numeric simulator is developed to predict the nonlinear, convective-reactive, oxygen mass exchange in a cross-flow hollow fiber blood oxygenator. The numeric simulator also calculates the carbon dioxide mass exchange, as hemoglobin affinity to oxygen is affected by the local pH value, which depends mostly on the local carbon dioxide content in blood. Blood pH calculation inside the oxygenator is made by the simultaneous solution of an equation that takes into account the blood buffering capacity and the classical Henderson-Hasselbach equation. The modeling of the mass transfer conductance in the blood comprises a global factor, which is a function of the Reynolds number, and a local factor, which takes into account the amount of oxygen reacted to hemoglobin. The simulator is calibrated against experimental data for an in-line fiber bundle. The results are: (i) the calibration process allows the precise determination of the mass transfer conductance for both oxygen and carbon dioxide; (ii) very alkaline pH values occur in the blood path at the gas inlet side of the fiber bundle; (iii) the parametric analysis of the effect of the blood base excess (BE) shows that V(CO2) is similar in the case of blood metabolic alkalosis, metabolic acidosis, or normal BE, for a similar blood inlet P(CO2), although the condition of metabolic alkalosis is the worst case, as the pH in the vicinity of the gas inlet is the most alkaline; (iv) the parametric analysis of the effect of the gas flow to blood flow ratio (Q(G)/Q(B)) shows that V(CO2) variation with the gas flow is almost linear up to Q(G)/Q(B) = 2.0. V(O2) is not affected by the gas flow as it was observed that by increasing the gas flow up to eight times, the V(O2) grows only 1%. The mass exchange of carbon dioxide uses the full length of the hollow-fiber only if Q(G)/Q(B) > 2.0, as it was observed that only in this condition does the local variation of pH and blood P(CO2) comprise the whole fiber bundle.
Resumo:
The TCP/IP architecture was consolidated as a standard to the distributed systems. However, there are several researches and discussions about alternatives to the evolution of this architecture and, in this study area, this work presents the Title Model to contribute with the application needs support by the cross layer ontology use and the horizontal addressing, in a next generation Internet. For a practical viewpoint, is showed the network cost reduction for the distributed programming example, in networks with layer 2 connectivity. To prove the title model enhancement, it is presented the network analysis performed for the message passing interface, sending a vector of integers and returning its sum. By this analysis, it is confirmed that the current proposal allows, in this environment, a reduction of 15,23% over the total network traffic, in bytes.
Resumo:
Since the computer viruses pose a serious problem to individual and corporative computer systems, a lot of effort has been dedicated to study how to avoid their deleterious actions, trying to create anti-virus programs acting as vaccines in personal computers or in strategic network nodes. Another way to combat viruses propagation is to establish preventive policies based on the whole operation of a system that can be modeled with population models, similar to those that are used in epidemiological studies. Here, a modified version of the SIR (Susceptible-Infected-Removed) model is presented and how its parameters are related to network characteristics is explained. Then, disease-free and endemic equilibrium points are calculated, stability and bifurcation conditions are derived and some numerical simulations are shown. The relations among the model parameters in the several bifurcation conditions allow a network design minimizing viruses risks. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Computer viruses are an important risk to computational systems endangering either corporations of all sizes or personal computers used for domestic applications. Here, classical epidemiological models for disease propagation are adapted to computer networks and, by using simple systems identification techniques a model called SAIC (Susceptible, Antidotal, Infectious, Contaminated) is developed. Real data about computer viruses are used to validate the model. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Symptoms resembling giant calyx, a graft-transmissible disease, were observed on 1-5% of eggplant (aubergine; Solanum melongena L.) plants in production fields in Sao Paulo state, Brazil. Phytoplasmas were detected in 1 2 of 1 2 samples from symptomatic plants that were analysed by a nested PCR assay employing 16S rRNA gene primers R16mF2/R16mR1 followed by R16F2n/R16R2. RFLP analysis of the resulting rRNA gene products (1.2 kb) indicated that all plants contained similar phytoplasmas, each closely resembling strains previously classified as members of RFLP group 16SrIII (X-disease group). Virtual RFLP and phylogenetic analyses of sequences derived from PCR products identified phytoplasmas infecting eggplant crops grown in Piracicaba as a lineage of the subgroup 16SrIII-J, whereas phytoplasmas detected in plants grown in Braganca Paulista were tentatively classified as members of a novel subgroup 16SrIII-U. These findings confirm eggplant as a new host of group 16SrIII-J phytoplasmas and extend the known diversity of strains belonging to this group in Brazil.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics. ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.