977 resultados para computational efficiency
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.
Resumo:
A shock capturing scheme is presented for the equations of isentropic flow based on upwind differencing applied to a locally linearized set of Riemann problems. This includes the two-dimensional shallow water equations using the familiar gas dynamics analogy. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver where the computational expense can be prohibitive. The scheme is applied to a two-dimensional dam-break problem and the approximate solution compares well with those given by other authors.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a real gas in a single spatial coordinate. This includes flow in a duct of variable cross-section, as well as flow with slab, cylindrical or spherical symmetry, as well as the case of an ideal gas, and can be useful when testing codes for the two-dimensional equations governing compressible flow of a real gas. The resulting scheme requires an average of the flow variables across the interface between cells, and this average is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual “square root” averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and for a number of equations of state. The results compare favourably with the results from other schemes.
Resumo:
An efficient numerical method is presented for the solution of the Euler equations governing the compressible flow of a real gas. The scheme is based on the approximate solution of a specially constructed set of linearised Riemann problems. An average of the flow variables across the interface between cells is required, and this is chosen to be the arithmetic mean for computational efficiency, which is in contrast to the usual square root averaging. The scheme is applied to a test problem for five different equations of state.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the Euler equations for the compressible flow of an ideal gas. A linearised Riemann problem is defined, and a scheme based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency, leading to arithmetic averaging. This is in contrast to the usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. The scheme is applied to a shock tube problem and a blast wave problem. Each approximate solution compares well with those given by other schemes, and for the shock tube problem is in agreement with the exact solution.
Resumo:
A numerical scheme is presented for the solution of the Euler equations of compressible flow of a gas in a single spatial co-ordinate. This includes flow in a duct of variable cross-section as well as flow with slab, cylindrical or spherical symmetry and can prove useful when testing codes for the two-dimensional equations governing compressible flow of a gas. The resulting scheme requires an average of the flow variables across the interface between cells and for computational efficiency this average is chosen to be the arithmetic mean, which is in contrast to the usual ‘square root’ averages found in this type of scheme. The scheme is applied with success to five problems with either slab or cylindrical symmetry and a comparison is made in the cylindrical case with results from a two-dimensional problem with no sources.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.
Resumo:
The hierarchical and "bob" (or branch-on-branch) models are tube-based computational models recently developed for predicting the linear rheology of general mixtures of polydisperse branched polymers. These two models are based on a similar tube-theory framework but differ in their numerical implementation and details of relaxation mechanisms. We present a detailed overview of the similarities and differences of these models and examine the effects of these differences on the predictions of the linear viscoelastic properties of a set of representative branched polymer samples in order to give a general picture of the performance of these models. Our analysis confirms that the hierarchical and bob models quantitatively predict the linear rheology of a wide range of branched polymer melts but also indicate that there is still no unique solution to cover all types of branched polymers without case-by-case adjustment of parameters such as the dilution exponent alpha and the factor p(2) which defines the hopping distance of a branch point relative to the tube diameter. An updated version of the hierarchical model, which shows improved computational efficiency and refined relaxation mechanisms, is introduced and used in these analyses.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
When speech is in competition with interfering sources in rooms, monaural indicators of intelligibility fail to take account of the listener’s abilities to separate target speech from interfering sounds using the binaural system. In order to incorporate these segregation abilities and their susceptibility to reverberation, Lavandier and Culling [J. Acoust. Soc. Am. 127, 387–399 (2010)] proposed a model which combines effects of better-ear listening and binaural unmasking. A computationally efficient version of this model is evaluated here under more realistic conditions that include head shadow, multiple stationary noise sources, and real-room acoustics. Three experiments are presented in which speech reception thresholds were measured in the presence of one to three interferers using real-room listening over headphones, simulated by convolving anechoic stimuli with binaural room impulse-responses measured with dummy-head transducers in five rooms. Without fitting any parameter of the model, there was close correspondence between measured and predicted differences in threshold across all tested conditions. The model’s components of better-ear listening and binaural unmasking were validated both in isolation and in combination. The computational efficiency of this prediction method allows the generation of complex “intelligibility maps” from room designs. © 2012 Acoustical Society of America
Resumo:
A recent paper published in this journal considers the numerical integration of the shallow-water equations using the leapfrog time-stepping scheme [Sun Wen-Yih, Sun Oliver MT. A modified leapfrog scheme for shallow water equations. Comput Fluids 2011;52:69–72]. The authors of that paper propose using the time-averaged height in the numerical calculation of the pressure-gradient force, instead of the instantaneous height at the middle time step. The authors show that this modification doubles the maximum Courant number (and hence the maximum time step) at which the integrations are stable, doubling the computational efficiency. Unfortunately, the pressure-averaging technique proposed by the authors is not original. It was devised and published by Shuman [5] and has been widely used in the atmosphere and ocean modelling community for over 40 years.
Resumo:
Prism is a modular classification rule generation method based on the ‘separate and conquer’ approach that is alternative to the rule induction approach using decision trees also known as ‘divide and conquer’. Prism often achieves a similar level of classification accuracy compared with decision trees, but tends to produce a more compact noise tolerant set of classification rules. As with other classification rule generation methods, a principle problem arising with Prism is that of overfitting due to over-specialised rules. In addition, over-specialised rules increase the associated computational complexity. These problems can be solved by pruning methods. For the Prism method, two pruning algorithms have been introduced recently for reducing overfitting of classification rules - J-pruning and Jmax-pruning. Both algorithms are based on the J-measure, an information theoretic means for quantifying the theoretical information content of a rule. Jmax-pruning attempts to exploit the J-measure to its full potential because J-pruning does not actually achieve this and may even lead to underfitting. A series of experiments have proved that Jmax-pruning may outperform J-pruning in reducing overfitting. However, Jmax-pruning is computationally relatively expensive and may also lead to underfitting. This paper reviews the Prism method and the two existing pruning algorithms above. It also proposes a novel pruning algorithm called Jmid-pruning. The latter is based on the J-measure and it reduces overfitting to a similar level as the other two algorithms but is better in avoiding underfitting and unnecessary computational effort. The authors conduct an experimental study on the performance of the Jmid-pruning algorithm in terms of classification accuracy and computational efficiency. The algorithm is also evaluated comparatively with the J-pruning and Jmax-pruning algorithms.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.