973 resultados para compression refrigeration system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

H. Simon and B. Szörényi have found an error in the proof of Theorem 52 of “Shifting: One-inclusion mistake bounds and sample compression”, Rubinstein et al. (2009). In this note we provide a corrected proof of a slightly weakened version of this theorem. Our new bound on the density of one-inclusion hypergraphs is again in terms of the capacity of the multilabel concept class. Simon and Szörényi have recently proved an alternate result in Simon and Szörényi (2009).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical time-dependent model of an active magnetic regenerator (AMR) was developed for cooling in the kilowatt range. Earlier numerical models have been mostly developed for cooling power in the 0.4 kW range. In contrast, this paper reports the applicability of magnetic refrigeration to the 50 kW range. A packed bed active magnetic regenerator was modelled and the influence of parameters such as geometry and operating parameters were studied for different geometries. The pressure drop for AMR bed length and particle diameter was also studied. High cooling power and coefficient of performance (COP) were achieved by optimization of the diameter of the magnetocaloric powder particles and operating frequency. The optimum operating conditions of the AMR for a cooling capacity of 50 kW was determined for a temperature span of 15 K. The predicted coefficient of performance (COP) was found to be ∼6, making it an attractive alternative to vapour compression systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A thermodynamic analysis is presented for the two stage thermal compression process for an adsorption refrigeration cycle with HFC-134a as the working fluid and activated carbon as the adsorbent. Three specimens of varying achievable packing densities were evaluated. The influence of evaporating, condensing/adsorption and desorption temperatures was assessed through three performance indicators, namely,the uptake efficiency, the coefficient of performance and the exergetic efficiency. Conditions under which a two stage thermal compression process performs better than the single stage unit are identified. It is concluded that two stage thermal compression will be a viable proposition when the heat source temperature is low or when adsorption characteristics are weak or when adequate packing densities are difficult to realize. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction of processor based instruments in power systems is resulting in the rapid growth of the measured data volume. The present practice in most of the utilities is to store only some of the important data in a retrievable fashion for a limited period. Subsequently even this data is either deleted or stored in some back up devices. The investigations presented here explore the application of lossless data compression techniques for the purpose of archiving all the operational data - so that they can be put to more effective use. Four arithmetic coding methods suitably modified for handling power system steady state operational data are proposed here. The performance of the proposed methods are evaluated using actual data pertaining to the Southern Regional Grid of India. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Desalination is one of the most traditional processes to generate potable water. With the rise in demand for potable water and paucity of fresh water resources, this process has gained special importance. Conventional thermal desalination processes involves evaporative methods such as multi-stage flash and solar distils, which are found to be energy intensive, whereas reverse osmosis based systems have high operating and maintenance costs. The present work describes the Adsorption Desalination (AD) system, which is an emerging process of thermal desalination cum refrigeration capable of utilizing low grade heat easily obtainable from even non-concentrating type solar collectors. The system employs a combination of flash evaporation and thermal compression to generate cooling and desalinated water. The current study analyses the system dynamics of a 4-bed single stage silica-gel plus water based AD system. A lumped model is developed using conservation of energy and mass coupled with the kinetics of adsorption/desorption process. The constitutive equations for the system components viz. evaporator, adsorber and condenser, are solved and the performance of the system is evaluated for a single stage AD system at various condenser temperatures and cycle times to determine optimum operating conditions required for desalination and cooling. (C) 2013 P. Dutta. Published by Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

COO 1469-0194.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vita.