950 resultados para compression of vascular illnesses
Resumo:
Vaatimus kuvatiedon tiivistämisestä on tullut entistä ilmeisemmäksi viimeisen kymmenen vuoden aikana kuvatietoon perustuvien sovellutusten myötä. Nykyisin kiinnitetään erityistä huomiota spektrikuviin, joiden tallettaminen ja siirto vaativat runsaasti levytilaa ja kaistaa. Aallokemuunnos on osoittautunut hyväksi ratkaisuksi häviöllisessä tiedontiivistämisessä. Sen toteutus alikaistakoodauksessa perustuu aallokesuodattimiin ja ongelmana on sopivan aallokesuodattimen valinta erilaisille tiivistettäville kuville. Tässä työssä esitetään katsaus tiivistysmenetelmiin, jotka perustuvat aallokemuunnokseen. Ortogonaalisten suodattimien määritys parametrisoimalla on työn painopisteenä. Työssä todetaan myös kahden erilaisen lähestymistavan samanlaisuus algebrallisten yhtälöiden avulla. Kokeellinen osa sisältää joukon testejä, joilla perustellaan parametrisoinnin tarvetta. Erilaisille kuville tarvitaan erilaisia suodattimia sekä erilaiset tiivistyskertoimet saavutetaan eri suodattimilla. Lopuksi toteutetaan spektrikuvien tiivistys aallokemuunnoksen avulla.
Resumo:
The purpose of this thesis is to present a new approach to the lossy compression of multispectral images. Proposed algorithm is based on combination of quantization and clustering. Clustering was investigated for compression of the spatial dimension and the vector quantization was applied for spectral dimension compression. Presenting algo¬rithms proposes to compress multispectral images in two stages. During the first stage we define the classes' etalons, another words to each uniform areas are located inside the image the number of class is given. And if there are the pixels are not yet assigned to some of the clusters then it doing during the second; pass and assign to the closest eta¬lons. Finally a compressed image is represented with a flat index image pointing to a codebook with etalons. The decompression stage is instant too. The proposed method described in this paper has been tested on different satellite multispectral images from different resources. The numerical results and illustrative examples of the method are represented too.
Resumo:
Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.
Resumo:
The purpose of this thesis was to investigate the compression of filter cakes at high filtration pressures with five different test materials and to compare the energy consumption of high pressure compression with the energy consumption of thermal drying. The secondary target of this study was to investigate the particle deformation of test materials during filtration and compression. Literature part consists of basic theory of filtration and compression and of the basic parameters that influence the filtration process. There is also a brief description about all of the test materials including their properties and their industrial production and processing. Theoretical equations for calculating the energy consumptions of the filtrations at different conditions are also presented. At the beginning of the experiments at experimental part, the basic filtration tests were done with all the five test materials. Filtration tests were made at eight different pressures, from 6 bars up to 100 bars, by using piston press pressure filter. Filtration tests were then repeated by using a cylinder with smaller slurry volume than in the first series of filtration tests. Separate filtration tests were also done for investigating the deformation of solid particles during filtration and for finding the optimal curve for raising the filtration pressure. Energy consumption differences between high pressure filtration and ideal thermal drying process were done partly experimentally and partly by using theoretical calculation equations. By comparing these two water removal methods, the optimal ranges for their use were found considering their energy efficiency. The results of the measurements shows that the filtration rate increased and the moisture content of the filter cakes decreased as the filtration pressure was increased. Also the porosity of the filter cakes mainly decreased when the filtration pressure was increased. Particle deformation during the filtration was observed only with coal particles.
Resumo:
The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.
Resumo:
The effects of disturbances on plant community structure in tropical forests have been widely investigated. However, a majority of these studies examined only woody species, principally trees, whereas the effects of disturbances on the whole assemblage of vascular plants remain largely unexplored. At the present study, all vascular plants < 5m tall were surveyed in four habitats: natural treefall gaps, burned forest, and their adjacent understorey. The burned area differed from the other habitats in terms of species composition. However, species richness and plant density did not differ between burned area and the adjacent understorey, which is in accordance to the succession model that predict a rapid recovery of species richness, but with a different species composition in areas under moderate disturbance. The treefall gaps and the two areas of understorey did not differ among themselves in terms of the number of individuals, number of species, nor in species composition. The absence of differences between the vegetation in treefall gaps and in understorey areas seems to be in agreement with the current idea that the species present in treefall gaps are directly related to the vegetation composition before gap formation. Only minimal differences were observed between the analyses that considered only tree species and those that considered all growth habits. This suggests that the same processes acting on tree species (the best studied group of plants in tropical forests) are also acting on the whole assemblage of vascular plants in these communities.
Resumo:
Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001) in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.
Resumo:
The higher incidence of cardiovascular events in the morning is accompanied by an increased vascular tone. However, there are few published studies designed to evaluate the diurnal variation of vascular and endothelial parameters in healthy subjects. In the present investigation, we evaluated the diurnal variation in brachial artery diameter (BAD), flow-mediated dilation (FMD) and endothelium-independent dilation (NFMD) in a homogeneous sample of healthy non-smoker young men. Fifty subjects aged 20.8 ± 0.3 years (range: 18 to 25 years) were investigated by brachial artery ultrasound. Exclusion criteria were female gender and evidence of clinically significant health problems, including obesity. Volunteers were asked to rest and avoid fat meals as well as alcoholic beverages 48 h before and until completion of the evaluations. BAD, FMD and NFMD were measured at 7 am, 5 pm, and 10 pm and tested by repeated measures ANOVA. BAD was smaller at 7 am (mean ± SEM, 3.8 ± 0.1 mm) in comparison with 5 pm (3.9 ± 0.1) and 10 pm (4.0 ± 0.1 mm; P < 0.001). FMD values did not change significantly during the day, while NFMD increased more at 7 am (18.5 ± 1.1%), when compared to 15.5 ± 0.9% at 10 pm and 15.5 ± 0.9% at 5 pm (P = 0.04). The physiological state of vasoconstriction after awakening, with preserved capability to dilate in the morning, should be considered to be part of the healthy cardiovascular adaptation before considering later life risk factors and endothelial dysfunction.
Resumo:
Our objective was to determine the presence of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 and specific tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) in tumor samples obtained from patients with primary breast cancer. We attempted to correlate these findings with the status of the sentinel lymph node (SLN) and clinical-pathological characteristics such as age, tumor size, histological type, histological grade, and vascular invasion. Tumor samples from 88 patients with primary breast cancer were analyzed. The immunoreactivity of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tumors was correlated with clinical and pathological features, as well as SLN status. Nonparametric, Mann-Whittney, Kruskal-Wallis, and Spearmann tests were used. Categorical variables were analyzed by the Pearson test. No statistically significant correlation was found between the amount of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 and the presence of tumor cells in the SLN. However, larger tumor diameter (P < 0.01) and the presence of vascular invasion (P < 0.01) were correlated positively with a positive SLN. A significant correlation of higher VEGF levels (P = 0.04) and lower TIMP-1 levels (P = 0.04) with ductal histology was also observed. Furthermore, lower TIMP-2 levels showed a statistically significant correlation with younger age (<50 years) and larger tumor diameter (2.0-5.0 cm). A positive SLN correlated significantly with a larger tumor diameter and the presence of vascular invasion. Higher VEGF and lower TIMP-1 levels were observed in patients with ductal tumors, while higher TIMP-1 levels were observed in lobular tumors.
Resumo:
Vascular endothelial growth factor (VEGF) is one of the most potent endothelial cell mitogens and plays a critical role in angiogenesis. Polymorphisms in this gene have been evaluated in patients with several types of cancer. The objectives of this study were to determine if there was an association of the -1154G/A polymorphism of the VEGF gene with head and neck cancer and the interaction of this polymorphism with lifestyle and demographic factors. Additionally, the distribution of the VEGF genotype was investigated with respect to the clinicopathological features of head and neck cancer patients. The study included 100 patients with histopathological diagnosis of head and neck squamous cell carcinoma. Patients with treated tumors were excluded. A total of 176 individuals 40 years or older were included in the control group and individuals with a family history of neoplasias were excluded. Analysis was performed after extraction of genomic DNA using the real-time PCR technique. No statistically significant differences between allelic and genotype frequencies of -1154G/A VEGF polymorphism were identified between healthy individuals and patients. The real-time PCR analyses showed a G allele frequency of 0.72 and 0.74 for patients and the control group, respectively. The A allele showed a frequency of 0.28 for head and neck cancer patients and 0.26 for the control group. However, analysis of the clinicopathological features showed a decreased frequency of the A allele polymorphism in patients with advanced (T3 and T4) tumors (OR = 0.36; 95%CI = 0.14-0.93; P = 0.0345). The -1154A allele of the VEGF gene may decrease the risk of tumor growth and be a possible biomarker for head and neck cancer. This polymorphism is associated with increased VEGF production and may have a prognostic importance.
Resumo:
Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.
Resumo:
Vascular hyporeactivity is an important factor in irreversible shock, and post-shock mesenteric lymph (PSML) blockade improves vascular reactivity after hemorrhagic shock. This study explored the possible involvement of myosin light chain kinase (MLCK) in PSML-mediated vascular hyporeactivity and calcium desensitization. Rats were divided into sham (n=12), shock (n=18), and shock+drainage (n=18) groups. A hemorrhagic shock model (40±2 mmHg, 3 h) was established in the shock and shock+drainage groups. PSML drainage was performed from 1 to 3 h from start of hypotension in shock+drainage rats. Levels of phospho-MLCK (p-MLCK) were determined in superior mesenteric artery (SMA) tissue, and the vascular reactivity to norepinephrine (NE) and sensitivity to Ca2+ were observed in SMA rings in an isolated organ perfusion system. p-MLCK was significantly decreased in the shock group compared with the sham group, but increased in the shock+drainage group compared with the shock group. Substance P (1 nM), an agonist of MLCK, significantly elevated the decreased contractile response of SMA rings to both NE and Ca2+ at various concentrations. Maximum contractility (Emax) in the shock group increased with NE (from 0.179±0.038 to 0.440±0.177 g/mg, P<0.05) and Ca2+ (from 0.515±0.043 to 0.646±0.096 g/mg, P<0.05). ML-7 (0.1 nM), an inhibitor of MLCK, reduced the increased vascular response to NE and Ca2+ at various concentrations in the shock+drainage group (from 0.744±0.187 to 0.570±0.143 g/mg in Emax for NE and from 0.729±0.037 to 0.645±0.056 g/mg in Emax for Ca2+, P<0.05). We conclude that MLCK is an important contributor to PSML drainage, enhancing vascular reactivity and calcium sensitivity in rats with hemorrhagic shock.
Resumo:
Health education is essential to the successful treatment of individuals with chronic illnesses. Self-management is a philosophical model of health education that has been shown to be effective in teaching individuals with chronic arthritis to manage their illness as part of their daily lives. Despite the proven results of arthritis self-management programs, some limitations of this form of health education were apparent in the literature. The present study attempted to address the problems of the self-management approach of health education such as reasons for lack of participation in programs and poor course outcomes. In addition, the study served to investigate the relationship between course outcomes and participation in programs with the theory upon which arthritis self-management programs are based, known as self-efficacy theory. Through a combination of qualitative and quantitative methodologies, data collection, and analysis, a deeper understanding of the self-management phenomenon in the treatment of chronic arthritic conditions was established. Findings of the study confirm findings of previous studies that suggest that arthritis self-management programs result in enhanced levels of self-efficacy and are effective in teaching individuals with arthritis to self-manage their health and health care. Findings of the study suggest that there are many factors that determine the choice of participants to participate in programs and the outcomes for the individuals who do choose to participate in programs. Some of the major determinants of enrollment and outcomes of programs include: the participant's personality, beliefs, attitudes and abilities, and the degree of emotional acceptance of the illness. Other determinants of course enrollment and outcomes included class size and length of time, timing of participation, and ongoing support after the program. The results of the study are consistent with the self-management literature and confirm the relationship between the underlying philosophies of adult education and Freire's model of education and self-management.