950 resultados para comprehensive model
Understanding and improving the chemical vapor deposition process for solar grade silicon production
Resumo:
Esta Tesis Doctoral se centra en la investigación del proceso de producción de polisilicio para aplicaciones fotovoltaicas (FV) por la vía química; mediante procesos de depósito en fase vapor (CVD). El polisilicio para la industria FV recibe el nombre de silicio de grado solar (SoG Si). Por un lado, el proceso que domina hoy en día la producción de SoG Si está basado en la síntesis, destilación y descomposición de triclorosilano (TCS) en un reactor CVD -denominado reactor Siemens-. El material obtenido mediante este proceso es de muy alta pureza, pero a costa de un elevado consumo energético. Así, para alcanzar los dos principales objetivos de la industria FV basada en silicio, bajos costes de producción y bajo tiempo de retorno de la energía invertida en su fabricación, es esencial disminuir el consumo energético de los reactores Siemens. Por otro lado, una alternativa al proceso Siemens considera la descomposición de monosilano (MS) en un reactor de lecho fluidizado (FBR). Este proceso alternativo tiene un consumo energético mucho menor que el de un reactor Siemens, si bien la calidad del material resultante es también menor; pero ésta puede ser suficiente para la industria FV. A día de hoy los FBR deben aún abordar una serie de retos para que su menor consumo energético sea una ventaja suficiente comparada con otras desventajas de estos reactores. En resumen, la investigación desarrollada se centra en el proceso de depósito de polysilicio por CVD a partir de TCS -reactor Siemens-; pero también se investiga el proceso de producción de SoG Si en los FBR exponiendo las fortalezas y debilidades de esta alternativa. Para poder profundizar en el conocimiento del proceso CVD para la producción de polisilicio es clave el conocimiento de las reacciones químicas fundamentales y cómo éstas influencian la calidad del producto resultante, al mismo tiempo que comprender los fenómenos responsables del consumo energético. Por medio de un reactor Siemens de laboratorio en el que se llevan a cabo un elevado número de experimentos de depósito de polisilicio de forma satisfactoria se adquiere el conocimiento previamente descrito. Se pone de manifiesto la complejidad de los reactores CVD y de los problemas asociados a la pérdidas de calor de estos procesos. Se identifican las contribuciones a las pérdidas de calor de los reactores CVD, éstas pérdidas de calor son debidas principalmente a los fenómenos de radiación y, conducción y convección vía gases. En el caso de los reactores Siemens el fenómeno que contribuye en mayor medida al alto consumo energético son las pérdidas de calor por radiación, mientras que en los FBRs tanto la radiación como el calor transferido por transporte másico contribuyen de forma importante. Se desarrolla un modelo teórico integral para el cálculo de las pérdidas de calor en reactores Siemens. Este modelo está formado a su vez por un modelo para la evaluación de las pérdidas de calor por radiación y modelos para la evaluación de las pérdidas de calor por conducción y convección vía gases. Se ponen de manifiesto una serie de limitaciones del modelo de pérdidas de calor por radiación, y se desarrollan una serie de modificaciones que mejoran el modelo previo. El modelo integral se valida por medio un reactor Siemens de laboratorio, y una vez validado se presenta su extrapolación a la escala industrial. El proceso de conversión de TCS y MS a polisilicio se investiga mediante modelos de fluidodinámica computacional (CFD). Se desarrollan modelados CFD para un reactor Siemens de laboratorio y para un prototipo FBR. Los resultados obtenidos mediante simulación son comparados, en ambos casos, con resultados experimentales. Los modelos desarrollados se convierten en herramientas para la identificación de aquellos parámetros que tienen mayor influencia en los procesos CVD. En el caso del reactor Siemens, ambos modelos -el modelo integral y el modelado CFD permiten el estudio de los parámetros que afectan en mayor medida al elevado consumo energético, y mediante su análisis se sugieren modificaciones para este tipo de reactores que se traducirían en un menor número de kilovatios-hora consumidos por kilogramo de silicio producido. Para el caso del FBR, el modelado CFD permite analizar el efecto de una serie de parámetros sobre la distribución de temperaturas en el lecho fluidizado; y dicha distribución de temperaturas está directamente relacionada con los principales retos de este tipo de reactores. Por último, existen nuevos conceptos de depósito de polisilicio; éstos se aprovechan de la ventaja teórica de un mayor volumen depositado por unidad de tiempo -cuando una mayor superficie de depósito está disponible- con el objetivo de reducir la energía consumida por los reactores Siemens. Estos conceptos se exploran mediante cálculos teóricos y pruebas en el reactor Siemens de laboratorio. ABSTRACT This Doctoral Thesis comprises research on polysilicon production for photovoltaic (PV) applications through the chemical route: chemical vapor deposition (CVD) process. PV polysilicon is named solar grade silicon (SoG Si). On the one hand, the besetting CVD process for SoG Si production is based on the synthesis, distillation, and decomposition of thriclorosilane (TCS) in the so called Siemens reactor; high purity silicon is obtained at the expense of high energy consumption. Thus, lowering the energy consumption of the Siemens process is essential to achieve the two wider objectives for silicon-based PV technology: low production cost and low energy payback time. On the other hand, a valuable variation of this process considers the use of monosilane (MS) in a fluidized bed reactor (FBR); lower output material quality is obtained but it may fulfil the requirements for the PV industry. FBRs demand lower energy consumption than Siemens reactors but further research is necessary to address the actual challenges of these reactors. In short, this work is centered in polysilicon CVD process from TCS -Siemens reactor-; but it also offers insights on the strengths and weaknesses of the FBR for SoG Si production. In order to aid further development in polysilicon CVD is key the understanding of the fundamental reactions and how they influence the product quality, at the same time as to comprehend the phenomena responsible for the energy consumption. Experiments conducted in a laboratory Siemens reactor prove the satisfactory operation of the prototype reactor, and allow to acquire the knowledge that has been described. Complexity of the CVD reactors is stated and the heat loss problem associated with polysilicon CVD is addressed. All contributions to the energy consumption of Siemens reactors and FBRs are put forward; these phenomena are radiation and, conduction and convection via gases heat loss. In a Siemens reactor the major contributor to the energy consumption is radiation heat loss; in case of FBRs radiation and heat transfer due to mass transport are both important contributors. Theoretical models for radiation, conduction and convection heat loss in a Siemens reactor are developed; shaping a comprehensive theoretical model for heat loss in Siemens reactors. Limitations of the radiation heat loss model are put forward, and a novel contribution to the existing model is developed. The comprehensive model for heat loss is validated through a laboratory Siemens reactor, and results are scaled to industrial reactors. The process of conversion of TCS and MS gases to solid polysilicon is investigated by means of computational fluid-dynamics models. CFD models for a laboratory Siemens reactor and a FBR prototype are developed. Simulated results for both CVD prototypes are compared with experimental data. The developed models are used as a tool to investigate the parameters that more strongly influence both processes. For the Siemens reactors, both, the comprehensive theoretical model and the CFD model allow to identify the parameters responsible for the great power consumption, and thus, suggest some modifications that could decrease the ratio kilowatts-hour per kilogram of silicon produced. For the FBR, the CFD model allows to explore the effect of a number of parameters on the thermal distribution of the fluidized bed; that is the main actual challenge of these type of reactors. Finally, there exist new deposition surface concepts that take advantage of higher volume deposited per time unit -when higher deposition area is available- trying to reduce the high energy consumption of the Siemens reactors. These novel concepts are explored by means of theoretical calculations and tests in the laboratory Siemens prototype.
Resumo:
El presente estudio se fundamenta en la investigación-acción-participativa (IAP), para buscar alternativas que tiendan al desarrollo local de un territorio. Se centra en la cuenca hidrográfica del rio Manglaralto-Santa Elena-Ecuador, aplicando un sistema metodológico participativo que considera las características peculiares del territorio, que se analizan geoespacialmente reconociendo la influencia de la dinámica de sus cambios y observando los móviles que la propiciaban. A través de mecanismos participativos, se conectan los aspectos técnicos para el conocimiento y el aprovechamiento racional del acuífero costero, con los valores de los habitantes del territorio, para mejorar su abastecimiento de agua y crear nuevas condiciones y oportunidades en el camino del desarrollo local, vislumbrando la sostenibilidad. Cabe indicar que el ente administrativo y propulsor es la Junta de Agua Potable Regional Manglaralto (JAPRM). La hipótesis del estudio considera, que los métodos participativos generan en la comunidad una respuesta basada en su identidad y sus deseos de mejorar, que propiciará una gestión del acuífero costero que conlleve al desarrollo local. Otra hipótesis complementaria estipula que las estrategias del gobierno respecto al turismo propicia un crecimiento en la demanda del agua del acuífero. En Manglaralto-Ecuador, una parroquia de 30.000 habitantes aproximadamente, donde la JAPRM, administra y suministra agua a 23.586 habitantes que cuenta en su organización, llevada por 6 representantes de las comunidades rurales que la conforman, empezaron hace 7 años a buscar una forma de lograr un cambio, de tener agua para el desarrollo de la comunidad. Buscaron ayuda por diferentes medios, políticos, económicas, sociales y encontraron como base fundamental a la cooperación con el Organismo Internacional de Energía Atómica (OIEA) y la Escuela Superior Politécnica del Litoral (ESPOL) para entrelazar aspectos técnicos, ambientales, sociales y culturales. La gestión del acuífero costero, desde la perspectiva del IAP repercute en el desarrollo de Manglaralto. También se realiza un análisis geoespacial-geoestadístico, para vislumbrar aspectos de cambios en el territorio ligados al crecimiento turístico, que afectan a la demanda del recurso agua proveniente del acuífero costero bajo la administración de la JAPRM. La tesis presenta el modelo integral y propio de la comunidad de Manglaralto, que refleja una evolución que alcanzó un apogeo en 2011 y parte del 2012, con 9 pozos de agua que daban servicio los 365 días del año, 24 horas al día ininterrumpidamente. Las condiciones externas (promociones turísticas de la ruta del Spondylus) han repercutido en nuevas problemáticas (crecimiento elevado de la demanda del agua). El acuífero costero se convierte en el emblema y móvil de solución, gracias a la gestión integral y a la interacción IAP que se amolda a la evolución de las condiciones, buscando soluciones para la comunidad y su entorno. El modelo integral del territorio con la participación de sus pobladores, considera el aspecto turístico, como un agente que propicia la mayor demanda del agua. Situación a la que hay que dar respuesta mediante la observación-reflexión en el ciclo del IAP para generar nuevas directrices estratégicas y gestionar el desarrollo local. ABSTRACT The present study is based on the participatory action research (PAR) methodology in order to look for alternatives which tend to the local development of a territory. It focuses on the Manglaralto hydrographic river basin located in Santa Elena-Ecuador through the application of the participatory methodology which considers the peculiar characteristics of the territory. These are geospatially analyzed recognizing the influence of its dynamic of changes and observing the causes that originated them. Through the use of participatory mechanisms, technical aspects are connected for stimulating knowledge and rational use of the coastal aquifer with the values of inhabitants of the territory to improve the water supply and create new conditions of sustainability. It is important to point out that the administrative organism and promoter is the Manglaralto Regional Fresh Water Board (JAPRM). In Manglaralto-Ecuador, a parish of approximately 30,000 inhabitants, the MRFWB manages and supplies water to 23.586 inhabitants. This organization is composed by 6 representatives of rural communities. It started 7 years ago looking for a way to achieve a change, from obtaining water to developing the community. They seeked for help in different fields such as: political, economic and social and they found International Atomic Energy Agency (IAEA) and Escuela Superior Politécnica del Litoral (ESPOL) as a fundamental basis for cooperation to bond technical, environmental, social and cultural aspects. Management of coastal aquifer, from the PAR perspective affects the development of Manglaralto. Also, a geospatial and geostatistical analysis is carried out to distinguish change aspects in territories related to touristy growth which affects the demand of water obtained from the coastal aquifer under the management of the MRFWB. The thesis presents a comprehensive model that belongs to the Manglaralto community and reveals an evolution that reached a peak in 2011 and part of 2012, with 9 water wells that operated the 365 days of the year 24 hours a day without interruption. The external conditions (touristic packages of Spondylus route) have created new problems (higher demand of water). The coastal aquifer is a symbol and solution, thanks to the comprehensive management and PAR interaction which fits the evolution of conditions, looking for solutions for the community and its surroundings. The comprehensive model of territory with the participation of inhabitants considers the touristic aspect as an agent which brings about a higher demand of water. This situation requests a response through the observation-reflection in the PAR cycle to generate new strategic guidelines and promote the local development.
Resumo:
Las empresas realizan fuertes inversiones en la construcción de las personalidades de las marcas bajo el supuesto –entre otros- de que las personalidades de las marcas influyen en las preferencias y decisiones de los consumidores. Existe una necesidad de expandir el conocimiento en esta área y en lugar de trabajar bajo supuestos, hacerlo bajo teorías apoyadas en evidencia empírica. Esta tesis aborda la teoría de la congruencia incorporando dimensiones hasta ahora no exploradas: la cultura latina y el sexo de los consumidores, y cómo moderan el impacto de la congruencia en las evaluaciones de marcas de consumo privado y marcas de consumo público. Si bien estudios anteriores han abordado este tema, la mayor parte de los estudios han utilizado marcas de productos adictivos (por ejemplo cerveza y cigarrillos) y solamente en los Estados Unidos. Esta tesis extiende el conocimiento existente al proponer un modelo comprehensivo y aportar evidencia que apoya la tesis de que dos tipos de congruencia (de marca y de usuario) influencian positivamente las evaluaciones (preferencias de marca e intenciones de compra) con mayor intensidad en el caso de las marcas de consumo público que en las de consumo privado, en el contexto de culturas latinas. También contribuye a la teoría existente al encontrar que el sexo de los consumidores influye en el impacto de la congruencia en las preferencias e intenciones de compra. ABSTRACT Investments are allocated to brand building on the assumption –among others- that brand personalities impact consumer choices. However, research has concentrated on the study of brand personalities but little on their impact on preference and choice. There is a need to further advance knowledge about the impact of congruence on consumer decisions so that decisions are based not on assumptions but on theories supported by evidence. This thesis addresses congruence theory incorporating dimensions not previously addressed: Latin cultures and gender, and how they moderate the impact of congruence on brand evaluations for privately and publicly consumed brands. While prior research has touched on these attributes, most of it has explored publicly consumed products in the context of addictive products (e.g., beer or alcohol) and only within the United States. This research extends prior knowledge by proposing a comprehensive model and by providing evidence that two types of congruence (brand-personality and user-image) positively influence brand evaluations more so for publicly consumed brands than for privately consumed brands, in the context of Latin cultures. Also, it contributes to current theory by finding that sex influences the impact of congruence on brand preferences and on intention to buy.
Resumo:
In recent decades, full electric and hybrid electric vehicles have emerged as an alternative to conventional cars due to a range of factors, including environmental and economic aspects. These vehicles are the result of considerable efforts to seek ways of reducing the use of fossil fuel for vehicle propulsion. Sophisticated technologies such as hybrid and electric powertrains require careful study and optimization. Mathematical models play a key role at this point. Currently, many advanced mathematical analysis tools, as well as computer applications have been built for vehicle simulation purposes. Given the great interest of hybrid and electric powertrains, along with the increasing importance of reliable computer-based models, the author decided to integrate both aspects in the research purpose of this work. Furthermore, this is one of the first final degree projects held at the ETSII (Higher Technical School of Industrial Engineers) that covers the study of hybrid and electric propulsion systems. The present project is based on MBS3D 2.0, a specialized software for the dynamic simulation of multibody systems developed at the UPM Institute of Automobile Research (INSIA). Automobiles are a clear example of complex multibody systems, which are present in nearly every field of engineering. The work presented here benefits from the availability of MBS3D software. This program has proven to be a very efficient tool, with a highly developed underlying mathematical formulation. On this basis, the focus of this project is the extension of MBS3D features in order to be able to perform dynamic simulations of hybrid and electric vehicle models. This requires the joint simulation of the mechanical model of the vehicle, together with the model of the hybrid or electric powertrain. These sub-models belong to completely different physical domains. In fact the powertrain consists of energy storage systems, electrical machines and power electronics, connected to purely mechanical components (wheels, suspension, transmission, clutch…). The challenge today is to create a global vehicle model that is valid for computer simulation. Therefore, the main goal of this project is to apply co-simulation methodologies to a comprehensive model of an electric vehicle, where sub-models from different areas of engineering are coupled. The created electric vehicle (EV) model consists of a separately excited DC electric motor, a Li-ion battery pack, a DC/DC chopper converter and a multibody vehicle model. Co-simulation techniques allow car designers to simulate complex vehicle architectures and behaviors, which are usually difficult to implement in a real environment due to safety and/or economic reasons. In addition, multi-domain computational models help to detect the effects of different driving patterns and parameters and improve the models in a fast and effective way. Automotive designers can greatly benefit from a multidisciplinary approach of new hybrid and electric vehicles. In this case, the global electric vehicle model includes an electrical subsystem and a mechanical subsystem. The electrical subsystem consists of three basic components: electric motor, battery pack and power converter. A modular representation is used for building the dynamic model of the vehicle drivetrain. This means that every component of the drivetrain (submodule) is modeled separately and has its own general dynamic model, with clearly defined inputs and outputs. Then, all the particular submodules are assembled according to the drivetrain configuration and, in this way, the power flow across the components is completely determined. Dynamic models of electrical components are often based on equivalent circuits, where Kirchhoff’s voltage and current laws are applied to draw the algebraic and differential equations. Here, Randles circuit is used for dynamic modeling of the battery and the electric motor is modeled through the analysis of the equivalent circuit of a separately excited DC motor, where the power converter is included. The mechanical subsystem is defined by MBS3D equations. These equations consider the position, velocity and acceleration of all the bodies comprising the vehicle multibody system. MBS3D 2.0 is entirely written in MATLAB and the structure of the program has been thoroughly studied and understood by the author. MBS3D software is adapted according to the requirements of the applied co-simulation method. Some of the core functions are modified, such as integrator and graphics, and several auxiliary functions are added in order to compute the mathematical model of the electrical components. By coupling and co-simulating both subsystems, it is possible to evaluate the dynamic interaction among all the components of the drivetrain. ‘Tight-coupling’ method is used to cosimulate the sub-models. This approach integrates all subsystems simultaneously and the results of the integration are exchanged by function-call. This means that the integration is done jointly for the mechanical and the electrical subsystem, under a single integrator and then, the speed of integration is determined by the slower subsystem. Simulations are then used to show the performance of the developed EV model. However, this project focuses more on the validation of the computational and mathematical tool for electric and hybrid vehicle simulation. For this purpose, a detailed study and comparison of different integrators within the MATLAB environment is done. Consequently, the main efforts are directed towards the implementation of co-simulation techniques in MBS3D software. In this regard, it is not intended to create an extremely precise EV model in terms of real vehicle performance, although an acceptable level of accuracy is achieved. The gap between the EV model and the real system is filled, in a way, by introducing the gas and brake pedals input, which reflects the actual driver behavior. This input is included directly in the differential equations of the model, and determines the amount of current provided to the electric motor. For a separately excited DC motor, the rotor current is proportional to the traction torque delivered to the car wheels. Therefore, as it occurs in the case of real vehicle models, the propulsion torque in the mathematical model is controlled through acceleration and brake pedal commands. The designed transmission system also includes a reduction gear that adapts the torque coming for the motor drive and transfers it. The main contribution of this project is, therefore, the implementation of a new calculation path for the wheel torques, based on performance characteristics and outputs of the electric powertrain model. Originally, the wheel traction and braking torques were input to MBS3D through a vector directly computed by the user in a MATLAB script. Now, they are calculated as a function of the motor current which, in turn, depends on the current provided by the battery pack across the DC/DC chopper converter. The motor and battery currents and voltages are the solutions of the electrical ODE (Ordinary Differential Equation) system coupled to the multibody system. Simultaneously, the outputs of MBS3D model are the position, velocity and acceleration of the vehicle at all times. The motor shaft speed is computed from the output vehicle speed considering the wheel radius, the gear reduction ratio and the transmission efficiency. This motor shaft speed, somehow available from MBS3D model, is then introduced in the differential equations corresponding to the electrical subsystem. In this way, MBS3D and the electrical powertrain model are interconnected and both subsystems exchange values resulting as expected with tight-coupling approach.When programming mathematical models of complex systems, code optimization is a key step in the process. A way to improve the overall performance of the integration, making use of C/C++ as an alternative programming language, is described and implemented. Although this entails a higher computational burden, it leads to important advantages regarding cosimulation speed and stability. In order to do this, it is necessary to integrate MATLAB with another integrated development environment (IDE), where C/C++ code can be generated and executed. In this project, C/C++ files are programmed in Microsoft Visual Studio and the interface between both IDEs is created by building C/C++ MEX file functions. These programs contain functions or subroutines that can be dynamically linked and executed from MATLAB. This process achieves reductions in simulation time up to two orders of magnitude. The tests performed with different integrators, also reveal the stiff character of the differential equations corresponding to the electrical subsystem, and allow the improvement of the cosimulation process. When varying the parameters of the integration and/or the initial conditions of the problem, the solutions of the system of equations show better dynamic response and stability, depending on the integrator used. Several integrators, with variable and non-variable step-size, and for stiff and non-stiff problems are applied to the coupled ODE system. Then, the results are analyzed, compared and discussed. From all the above, the project can be divided into four main parts: 1. Creation of the equation-based electric vehicle model; 2. Programming, simulation and adjustment of the electric vehicle model; 3. Application of co-simulation methodologies to MBS3D and the electric powertrain subsystem; and 4. Code optimization and study of different integrators. Additionally, in order to deeply understand the context of the project, the first chapters include an introduction to basic vehicle dynamics, current classification of hybrid and electric vehicles and an explanation of the involved technologies such as brake energy regeneration, electric and non-electric propulsion systems for EVs and HEVs (hybrid electric vehicles) and their control strategies. Later, the problem of dynamic modeling of hybrid and electric vehicles is discussed. The integrated development environment and the simulation tool are also briefly described. The core chapters include an explanation of the major co-simulation methodologies and how they have been programmed and applied to the electric powertrain model together with the multibody system dynamic model. Finally, the last chapters summarize the main results and conclusions of the project and propose further research topics. In conclusion, co-simulation methodologies are applicable within the integrated development environments MATLAB and Visual Studio, and the simulation tool MBS3D 2.0, where equation-based models of multidisciplinary subsystems, consisting of mechanical and electrical components, are coupled and integrated in a very efficient way.
Resumo:
Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.
Resumo:
Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Understanding the contribution of marketing to economic and social outcomes is fundamental to broadening the focus of marketing. The authors develop a comprehensive model that integrates the impact of service quality and service satisfaction on both economic and societal outcomes. The model is validated using two random samples involving intensive health services. The results indicate that service quality and service satisfaction significantly enhance quality of life and behavioral intentions, highlighting that customer service has social as well as economic outcomes. This is an important finding given the movement toward recognizing social and environmental outcomes, such as emphasized through triple bottom-line reporting. The findings have important implications for managing service processes, for improving the quality of life of customers, and for enhancing customers' behavioral intentions toward the organization.
Resumo:
Mechanistic models of pilling are discussed in general terms, and a framework for pilling simulations is thereby created. A fundamental flaw in earlier models of pilling is revealed. A more comprehensive model of fibre diffusion and withdrawal from the fabric is proposed, and this is solved in general terms to find the rate of fuzz growth. Fuzz wear-off and entanglement into pills are discussed. Fibre fatigue is introduced, and it is demonstrated that this potentially increases the rate of withdrawal of anchor fibres.
Resumo:
This article explores the implementation of a comprehensive model of union strategy,consisting of union aims, union methods, union tactics, and level of decision-making (Gahan 1998). The analysis further employs the framework of Boxall and Haynes (1997) to assess the dominant strategy pattern of the unions. Empirical data are provided from a survey of seven national enterprise unions in the telecommunications industry in Indonesia. Research findings reveal that consultancy unionism is playing important roles in explaining the relationships among unions, workers, and employers. This pattern of strategy places more emphasis on servicing and limited partnership with employers. The stronger organising solidarity from their members may improve their partnership in the interest of union survival facing tough competition in the telecommunications business.
Resumo:
Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.
Resumo:
Advances in technology coupled with increasing labour costs have caused service firms to explore self-service delivery options. Although some studies have focused on self-service and use of technology in service delivery, few have explored the role of service quality in consumer evaluation of technology-based self-service options. By integrating and extending the self-service quality framework the service evaluation model and the Technology Acceptance Model the authors address this emerging issue by empirically testing a comprehensive model that captures the antecedents and consequences of perceived service quality to predict continued customer interaction in the technology-based self-service context of Internet banking. Important service evaluation constructs like perceived risk, perceived value and perceived satisfaction are modelled in this framework. The results show that perceived control has the strongest influence on service quality evaluations. Perceived speed of delivery, reliability and enjoyment also have a significant impact on service quality perceptions. The study also found that even though perceived service quality, perceived risk and satisfaction are important predictors of continued interaction, perceived customer value plays a pivotal role in influencing continued interaction.
Resumo:
The Fibre Distributed Data Interface (FDDI) represents the new generation of local area networks (LANs). These high speed LANs are capable of supporting up to 500 users over a 100 km distance. User traffic is expected to be as diverse as file transfers, packet voice and video. As the proliferation of FDDI LANs continues, the need to interconnect these LANs arises. FDDI LAN interconnection can be achieved in a variety of different ways. Some of the most commonly used today are public data networks, dial up lines and private circuits. For applications that can potentially generate large quantities of traffic, such as an FDDI LAN, it is cost effective to use a private circuit leased from the public carrier. In order to send traffic from one LAN to another across the leased line, a routing algorithm is required. Much research has been done on the Bellman-Ford algorithm and many implementations of it exist in computer networks. However, due to its instability and problems with routing table loops it is an unsatisfactory algorithm for interconnected FDDI LANs. A new algorithm, termed ISIS which is being standardized by the ISO provides a far better solution. ISIS will be implemented in many manufacturers routing devices. In order to make the work as practical as possible, this algorithm will be used as the basis for all the new algorithms presented. The ISIS algorithm can be improved by exploiting information that is dropped by that algorithm during the calculation process. A new algorithm, called Down Stream Path Splits (DSPS), uses this information and requires only minor modification to some of the ISIS routing procedures. DSPS provides a higher network performance, with very little additional processing and storage requirements. A second algorithm, also based on the ISIS algorithm, generates a massive increase in network performance. This is achieved by selecting alternative paths through the network in times of heavy congestion. This algorithm may select the alternative path at either the originating node, or any node along the path. It requires more processing and memory storage than DSPS, but generates a higher network power. The final algorithm combines the DSPS algorithm with the alternative path algorithm. This is the most flexible and powerful of the algorithms developed. However, it is somewhat complex and requires a fairly large storage area at each node. The performance of the new routing algorithms is tested in a comprehensive model of interconnected LANs. This model incorporates the transport through physical layers and generates random topologies for routing algorithm performance comparisons. Using this model it is possible to determine which algorithm provides the best performance without introducing significant complexity and storage requirements.
Resumo:
This research developed, proposed and tested an integrated psychological process to performance model. The model utilized the overarching theory of social exchange to incorporate the climate perceptions and affective reactions of 3,012 employees across 88 UK call centres. In the pursuit of parsimony, a review of the applied psychology literature gave rise to a model where the path between global service climate and contextual performance was fully mediated by, first, perceived organizational support, second, job satisfaction and third, affective commitment. The resulting integrated and parsimonious model was tested via SEM and the mediation hypotheses were tested via a series of nested competing models. A moderate fit and partial, rather than full, mediation were reported. Nested Competing Model 4 proved to be the most parsimonious and to have the best fit. It is important to recognise, however, that Nested Competing Model 4 is not intended to be the most comprehensive model (which would include all significant paths), but a more practically useful one (i.e. parsimonious), that focuses on the main relationships.
Resumo:
The rationale for carrying out this research was to address the clear lack of knowledge surrounding the measurement of public hospital performance in Ireland. The objectives of this research were to develop a comprehensive model for measuring hospital performance and using this model to measure the performance of public acute hospitals in Ireland in 2007. Having assessed the advantages and disadvantages of various measurement models the Data Envelopment Analysis (DEA) model was chosen for this research. DEA was initiated by Charnes, Cooper and Rhodes in 1978 and further developed by Fare et al. (1983) and Banker et al. (1984). The method used to choose relevant inputs and outputs to be included in the model followed that adopted by Casu et al. (2005) which included the use of focus groups. The main conclusions of the research are threefold. Firstly, it is clear that each stakeholder group has differing opinions on what constitutes good performance. It is therefore imperative that any performance measurement model would be designed within parameters that are clearly understood by any intended audience. Secondly, there is a lack of publicly available qualitative information in Ireland that inhibits detailed analysis of hospital performance. Thirdly, based on available qualitative and quantitative data the results indicated a high level of efficiency among the public acute hospitals in Ireland in their staffing and non pay costs, averaging 98.5%. As DEA scores are sensitive to the number of input and output variables as well as the size of the sample it should be borne in mind that a high level of efficiency could be as a result of using DEA with too many variables compared to the number of hospitals. No hospital was deemed to be scale efficient in any of the models even though the average scale efficiency for all of the hospitals was relatively high at 90.3%. Arising from this research the main recommendations would be that information on medical outcomes, survival rates and patient satisfaction should be made publicly available in Ireland; that despite a high average efficiency level that many individual hospitals need to focus on improving their technical and scale efficiencies, and that performance measurement models should be developed that would include more qualitative data.