985 resultados para component classification
Resumo:
This work describes an application of principal component analysis (PCA) on a database of secondary metabolites from the Asteraceae family. The numbers of occurrences of metabolites in 11 chemical classes for the different vibes of the family were used as variables, PCA allows the identification of chemical classes that contribute most to the subgroups classification within the family. Relationships between chemical composition and botanical classification were made. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Predicting and mapping productivity areas allows crop producers to improve their planning of agricultural activities. The primary aims of this work were the identification and mapping of specific management areas allowing coffee bean quality to be predicted from soil attributes and their relationships to relief. The study area was located in the Southeast of the Minas Gerais state, Brazil. A grid containing a total of 145 uniformly spaced nodes 50 m apart was established over an area of 31. 7 ha from which samples were collected at depths of 0. 00-0. 20 m in order to determine physical and chemical attributes of the soil. These data were analysed in conjunction with plant attributes including production, proportion of beans retained by different sieves and drink quality. The results of principal component analysis (PCA) in combination with geostatistical data showed the attributes clay content and available iron to be the best choices for identifying four crop production environments. Environment A, which exhibited high clay and available iron contents, and low pH and base saturation, was that providing the highest yield (30. 4l ha-1) and best coffee beverage quality (61 sacks ha-1). Based on the results, we believe that multivariate analysis, geostatistics and the soil-relief relationships contained in the digital elevation model (DEM) can be effectively used in combination for the hybrid mapping of areas of varying suitability for coffee production. © 2012 Springer Science+Business Media New York.
Resumo:
Vinte e sete amostras de mel, produzidas em dez cidades do Estado do Pará (Região Amazônica, norte do Brasil) por três espécies diferentes de abelhas (Apis mellifera, Melipona fasciculata e Melipona flavoneata), foram analisadas em seus teores de elementos minerais (Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Sr e Zn) e alguns parâmetros fisicoquímicos (cor, umidade, densidade, pH, sólidos insolúveis e solúveis totais, cinzas, condutividade elétrica, índice de formol, acidez livre, hidroximetilfurfural, açúcares redutores e totais e sacarose). Os teores minerais foram determinados via espectrometria de emissão atômica por plasma acoplado indutivamente (ICP OES) e as análises dos parâmetros físico-químicos seguiram metodologias oficiais. Os resultados das análises físico-químicas apresentaram-se de acordo com a legislação nacional e internacional, bem como com outros trabalhos similares ao redor do mundo. A análise estatística multivariada (análise por agrupamento hierárquico (HCA) e por componentes principais (PCA)) foi aplicada aos resultados dos teores metálicos e aos parâmetros físico-químicos, sendo possível a separação das amostras de mel conforme a espécie produtora.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a novel method for power quality signal decomposition is proposed based on Independent Component Analysis (ICA). This method aims to decompose the power system signal (voltage or current) into components that can provide more specific information about the different disturbances which are occurring simultaneously during a multiple disturbance situation. The ICA is originally a multichannel technique. However, the method proposes its use to blindly separate out disturbances existing in a single measured signal (single channel). Therefore, a preprocessing step for the ICA is proposed using a filter bank. The proposed method was applied to synthetic data, simulated data, as well as actual power system signals, showing a very good performance. A comparison with the decomposition provided by the Discrete Wavelet Transform shows that the proposed method presented better decoupling for the analyzed data. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.
Resumo:
Group B Streptococcus (GBS), in its transition from commensal to pathogen, will encounter diverse host environments and thus require coordinately controlling its transcriptional responses to these changes. This work was aimed at better understanding the role of two component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knock-out strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1-3% of the genome. Interestingly, two sugar phosphotransferase systems appeared differently regulated in the knock-out mutant of TCS-16, suggesting an involvement in monitoring carbon source availability. High throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16 with concomitant dramatic up-regulation of the adjacent operon encoding a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization and impaired growth/survival in the presence of vaginal mucoid components. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and also provide experimental evidence for TCS-17/RgfAC involvement in virulence.
Resumo:
We conducted a qualitative, multicenter study using a focus group design to explore the lived experiences of persons with any kind of primary sleep disorder with regard to functioning and contextual factors using six open-ended questions related to the International Classification of Functioning, Disability and Health (ICF) components. We classified the results using the ICF as a frame of reference. We identified the meaningful concepts within the transcribed data and then linked them to ICF categories according to established linking rules. The six focus groups with 27 participants yielded a total of 6986 relevant concepts, which were linked to a total of 168 different second-level ICF categories. From the patient perspective, the ICF components: (1) Body Functions; (2) Activities & Participation; and (3) Environmental Factors were equally represented; while (4) Body Structures appeared poignantly less frequently. Out of the total number of concepts, 1843 concepts (26%) were assigned to the ICF component Personal Factors, which is not yet classified but could indicate important aspects of resource management and strategy development of those who have a sleep disorder. Therefore, treatment of patients with sleep disorders must not be limited to anatomical and (patho-)physiological changes, but should also consider a more comprehensive view that includes patient's demands, strategies and resources in daily life and the contextual circumstances surrounding the individual.
Resumo:
We conducted an explorative, cross-sectional, multi-centre study in order to identify the most common problems of people with any kind of (primary) sleep disorder in a clinical setting using the International Classification of Functioning, Disability and Health (ICF) as a frame of reference. Data were collected from patients using a structured face-to-face interview of 45-60 min duration. A case record form for health professionals containing the extended ICF Checklist, sociodemographic variables and disease-specific variables was used. The study centres collected data of 99 individuals with sleep disorders. The identified categories include 48 (32%) for body functions, 13 (9%) body structures, 55 (37%) activities and participation and 32 (22%) for environmental factors. 'Sleep functions' (100%) and 'energy and drive functions', respectively, (85%) were the most severely impaired second-level categories of body functions followed by 'attention functions' (78%) and 'temperament and personality functions' (77%). With regard to the component activities and participation, patients felt most restricted in the categories of 'watching' (e.g. TV) (82%), 'recreation and leisure' (75%) and 'carrying out daily routine' (74%). Within the component environmental factors the categories 'support of immediate family', 'health services, systems and policies' and 'products or substances for personal consumption [medication]' were the most important facilitators; 'time-related changes', 'light' and 'climate' were the most important barriers. The study identified a large variety of functional problems reflecting the complexity of sleep disorders. The ICF has the potential to provide a comprehensive framework for the description of functional health in individuals with sleep disorders in a clinical setting.
Resumo:
COMPOSERS COMMONLY USE MAJOR OR MINOR SCALES to create different moods in music.Nonmusicians show poor discrimination and classification of this musical dimension; however, they can perform these tasks if the decision is phrased as happy vs. sad.We created pairs of melodies identical except for mode; the first major or minor third or sixth was the critical note that distinguished major from minor mode. Musicians and nonmusicians judged each melody as major vs. minor or happy vs. sad.We collected ERP waveforms, triggered to the onset of the critical note. Musicians showed a late positive component (P3) to the critical note only for the minor melodies, and in both tasks.Nonmusicians could adequately classify the melodies as happy or sad but showed little evidence of processing the critical information. Major appears to be the default mode in music, and musicians and nonmusicians apparently process mode differently.
Resumo:
Prediction of clinical outcome in cancer is usually achieved by histopathological evaluation of tissue samples obtained during surgical resection of the primary tumor. Traditional tumor staging (AJCC/UICC-TNM classification) summarizes data on tumor burden (T), presence of cancer cells in draining and regional lymph nodes (N) and evidence for metastases (M). However, it is now recognized that clinical outcome can significantly vary among patients within the same stage. The current classification provides limited prognostic information, and does not predict response to therapy. Recent literature has alluded to the importance of the host immune system in controlling tumor progression. Thus, evidence supports the notion to include immunological biomarkers, implemented as a tool for the prediction of prognosis and response to therapy. Accumulating data, collected from large cohorts of human cancers, has demonstrated the impact of immune-classification, which has a prognostic value that may add to the significance of the AJCC/UICC TNM-classification. It is therefore imperative to begin to incorporate the 'Immunoscore' into traditional classification, thus providing an essential prognostic and potentially predictive tool. Introduction of this parameter as a biomarker to classify cancers, as part of routine diagnostic and prognostic assessment of tumors, will facilitate clinical decision-making including rational stratification of patient treatment. Equally, the inherent complexity of quantitative immunohistochemistry, in conjunction with protocol variation across laboratories, analysis of different immune cell types, inconsistent region selection criteria, and variable ways to quantify immune infiltration, all underline the urgent requirement to reach assay harmonization. In an effort to promote the Immunoscore in routine clinical settings, an international task force was initiated. This review represents a follow-up of the announcement of this initiative, and of the J Transl Med. editorial from January 2012. Immunophenotyping of tumors may provide crucial novel prognostic information. The results of this international validation may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).
Resumo:
OBJECTIVE: To compare the content covered by twelve obesity-specific health status measures using the International Classification of Functioning, Disability and Health (ICF). DESIGN: Obesity-specific health status measures were identified and then linked to the ICF separately by two trained health professionals according to standardized guidelines. The degree of agreement between health professionals was calculated by means of the kappa (kappa) statistic. Bootstrapped confidence intervals (CI) were calculated. The obesity-specific health-status measures were compared on the component and category level of the ICF. MEASUREMENTS: welve condition-specific health-status measures were identified and included in this study, namely the obesity-related problem scale, the obesity eating problems scale, the obesity-related coping and obesity-related distress questionnaire, the impact of weight on quality of life questionnaire (short version), the health-related quality of life questionnaire, the obesity adjustment survey (short form), the short specific quality of life scale, the obesity-related well-being questionnaire, the bariatric analysis and reporting outcome system, the bariatric quality of life index, the obesity and weight loss quality of life questionnaire and the weight-related symptom measure. RESULTS: In the 280 items of the eight measures, a total of 413 concepts were identified and linked to the 87 different ICF categories. The measures varied strongly in the number of concepts contained and the number of ICF categories used to map these concepts. Items on body functions varied form 12% in the obesity-related problem scale to 95% in the weight-related symptom measure. The estimated kappa coefficients ranged between 0.79 (CI: 0.72, 0.86) at the component ICFs level and 0.97 (CI: 0.93, 1.0) at the third ICF's level. CONCLUSION: The ICF proved highly useful for the content comparison of obesity-specific health-status measures. The results may provide clinicians and researchers with new insights when selecting health-status measures for clinical studies in obesity.
Resumo:
The early detection of subjects with probable Alzheimer's disease (AD) is crucial for effective appliance of treatment strategies. Here we explored the ability of a multitude of linear and non-linear classification algorithms to discriminate between the electroencephalograms (EEGs) of patients with varying degree of AD and their age-matched control subjects. Absolute and relative spectral power, distribution of spectral power, and measures of spatial synchronization were calculated from recordings of resting eyes-closed continuous EEGs of 45 healthy controls, 116 patients with mild AD and 81 patients with moderate AD, recruited in two different centers (Stockholm, New York). The applied classification algorithms were: principal component linear discriminant analysis (PC LDA), partial least squares LDA (PLS LDA), principal component logistic regression (PC LR), partial least squares logistic regression (PLS LR), bagging, random forest, support vector machines (SVM) and feed-forward neural network. Based on 10-fold cross-validation runs it could be demonstrated that even tough modern computer-intensive classification algorithms such as random forests, SVM and neural networks show a slight superiority, more classical classification algorithms performed nearly equally well. Using random forests classification a considerable sensitivity of up to 85% and a specificity of 78%, respectively for the test of even only mild AD patients has been reached, whereas for the comparison of moderate AD vs. controls, using SVM and neural networks, values of 89% and 88% for sensitivity and specificity were achieved. Such a remarkable performance proves the value of these classification algorithms for clinical diagnostics.
Resumo:
Well-known data mining algorithms rely on inputs in the form of pairwise similarities between objects. For large datasets it is computationally impossible to perform all pairwise comparisons. We therefore propose a novel approach that uses approximate Principal Component Analysis to efficiently identify groups of similar objects. The effectiveness of the approach is demonstrated in the context of binary classification using the supervised normalized cut as a classifier. For large datasets from the UCI repository, the approach significantly improves run times with minimal loss in accuracy.
Resumo:
The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) TNM staging system provides the most reliable guidelines for the routine prognostication and treatment of colorectal carcinoma. This traditional tumour staging summarizes data on tumour burden (T), the presence of cancer cells in draining and regional lymph nodes (N) and evidence for distant metastases (M). However, it is now recognized that the clinical outcome can vary significantly among patients within the same stage. The current classification provides limited prognostic information and does not predict response to therapy. Multiple ways to classify cancer and to distinguish different subtypes of colorectal cancer have been proposed, including morphology, cell origin, molecular pathways, mutation status and gene expression-based stratification. These parameters rely on tumour-cell characteristics. Extensive literature has investigated the host immune response against cancer and demonstrated the prognostic impact of the in situ immune cell infiltrate in tumours. A methodology named 'Immunoscore' has been defined to quantify the in situ immune infiltrate. In colorectal cancer, the Immunoscore may add to the significance of the current AJCC/UICC TNM classification, since it has been demonstrated to be a prognostic factor superior to the AJCC/UICC TNM classification. An international consortium has been initiated to validate and promote the Immunoscore in routine clinical settings. The results of this international consortium may result in the implementation of the Immunoscore as a new component for the classification of cancer, designated TNM-I (TNM-Immune).