934 resultados para complementary-metal-oxide semiconductor (CMOS) image sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart chemical sensor based on CMOS(complementary metal-oxide- semiconductor) compatible SOI(silicon on insulator) microheater platform was realized by facilitating ZnO nanowires growth on the small membrane at the relatively low temperature. Our SOI microheater platform can be operated at the very low power consumption with novel metal oxide sensing materials, like ZnO or SnO2 nanostructured materials which demand relatively high sensing temperature. In addition, our sol-gel growth method of ZnO nanowires on the SOI membrane was found to be very effective compared with ink-jetting or CVD growth techniques. These combined techniques give us the possibility of smart chemical sensor technology easily merged into the conventional semiconductor IC application. The physical properties of ZnO nanowire network grown by the solution-based method and its chemical sensing property also were reported in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a technique which can be used to improve the accuracy of infrared (IR) surface temperature measurements made on MEMS (Micro-Electro-Mechanical- Systems) devices. The technique was used to thermally characterize a SOI (Silicon-On-Insulator) CMOS (Complementary Metal Oxide Semiconductor) MEMS thermal flow sensor. Conventional IR temperature measurements made on the sensor were shown to give significant surface temperature errors, due to the optical transparency of the SiO 2 membrane layers and low emissivity/high reflectivity of the metal. By making IR measurements on radiative carbon micro-particles placed in isothermal contact with the device, the accuracy of the surface temperature measurement was significantly improved. © 2010 EDA Publishing/THERMINIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on thermal characterization of SOI (silicon on insulator) CMOS (complementary metal oxide semiconductor) MEMS (micro electro mechanical system) gas sensors using a thermoreflectance (TR) thermography system. The sensors were fabricated in a CMOS foundry and the micro hot-plate structures were created by back-etching the CMOS processed wafers in a MEMS foundry using DRIE (deep reactive ion etch) process. The calibration and experimental details of the thermoreflectance based thermal imaging setup, used for these micro hot-plate gas sensor structures, are presented. Experimentally determined temperature of a micro hot-plate sensor, using TR thermography and built-in silicon resistive temperature sensor, is compared with that estimated using numerical simulations. The results confirm that TR based thermal imaging technique can be used to determine surface temperature of CMOS MEMS devices with a high accuracy. © 2010 EDA Publishing/THERMINIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful utilization of an array of silicon on insulator complementary metal oxide semiconductor (SOICMOS) micro thermal shear stress sensors for flow measurements at macro-scale is demonstrated. The sensors use CMOS aluminum metallization as the sensing material and are embedded in low thermal conductivity silicon oxide membranes. They have been fabricated using a commercial 1 μm SOI-CMOS process and a post-CMOS DRIE back etch. The sensors with two different sizes were evaluated. The small sensors (18.5 ×18.5 μm2 sensing area on 266 × 266 μm2 oxide membrane) have an ultra low power (100 °C temperature rise at 6mW) and a small time constant of only 5.46 μs which corresponds to a cut-off frequency of 122 kHz. The large sensors (130 × 130 μm2 sensing area on 500 × 500 μm2 membrane) have a time constant of 9.82 μs (cut-off frequency of 67.9 kHz). The sensors' performance has proven to be robust under transonic and supersonic flow conditions. Also, they have successfully identified laminar, separated, transitional and turbulent boundary layers in a low speed flow. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel vision chip for high-speed target tracking. Two concise algorithms for high-speed target tracking are developed. The algorithms include some basic operations that can be used to process the real-time image information during target tracking. The vision chip is implemented that is based on the algorithms and a row-parallel architecture. A prototype chip has 64 x 64 pixels is fabricated by 0.35 pm complementary metal-oxide-semiconductor transistor (CMOS) process with 4.5 x 2.5 mm(2) area. It operates at a rate of 1000 frames per second with 10 MHz chip main clock. The experiment results demonstrate that a high-speed target can be tracked in complex static background and a high-speed target among other high-speed objects can be tracked in clean background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scaling down of the CMOS technology requires thinner gate dielectric to maintain high performance. However, due to the depletion of poly-Si gate, it is difficult to reduce the gate thickness further especially for sub-65 nm CMOS generation. Fully silicidation metal gate (FUSI) is one of the most promising solutions. Furthermore, FUSI metal gate reduces gate-line sheet resistance, prevents boron penetration to channels, and has good process compatibility with high-k gate dielectric. Poly-SiGe gate technology is another solution because of its enhancement of boron activation and compatibility with the conventional CMOS process. Combination of these two technologies for the formation of fully germanosilicided metal gate makes the approach very attractive. In this paper, the deposition of undoped Poly-Si₁₋xGex (0 < x < 30% ) films onto SiO₂ in a low pressure chemical vapor deposition (LPCVD) system is described. Detailed growth conditions and the characterization of the grown films are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El gran crecimiento de los sistemas MEMS (Micro Electro Mechanical Systems) así como su presencia en la mayoría de los dispositivos que usamos diariamente despertó nuestro interés. Paralelamente, la tecnología CMOS (Complementary Metal Oxide Semiconductor) es la tecnología más utilizada para la fabricación de circuitos integrados. Además de ventajas relacionadas con el funcionamiento electrónico del dispositivo final, la integración de sistemas MEMS en la tecnología CMOS reduce significantemente los costes de fabricación. Algunos de los dispositivos MEMS con mayor variedad de aplicaciones son los microflejes. Estos dispositivos pueden ser utilizados para la extracción de energía, en microscopios de fuerza atómica o en sensores, como por ejemplo, para biodetección. Los materiales piezoeléctricos más comúnmente utilizados en aplicaciones MEMS se sintetizan a altas temperaturas y por lo tanto no son compatibles con la tecnología CMOS. En nuestro caso hemos usado nitruro de alumino (AlN), que se deposita a temperatura ambiente y es compatible con la tecnología CMOS. Además, es biocompatible, y por tanto podría formar parte de un dispositivo que actúe como biosensor. A lo largo de esta tesis hemos prestado especial atención en desarrollar un proceso de fabricación rápido, reproducible y de bajo coste. Para ello, todos los pasos de fabricación han sido minuciosamente optimizados. Los parámetros de sputtering para depositar el AlN, las distintas técnicas y recetas de ataque, los materiales que actúan como electrodos o las capas sacrificiales para liberar los flejes son algunos de los factores clave estudiados en este trabajo. Una vez que la fabricación de los microflejes de AlN ha sido optimizada, fueron medidos para caracterizar sus propiedades piezoeléctricas y finalmente verificar positivamente su viabilidad como dispositivos piezoeléctricos. ABSTRACT The huge growth of MEMS (Micro Electro Mechanical Systems) as well as their presence in most of our daily used devices aroused our interest on them. At the same time, CMOS (Complementary Metal Oxide Semiconductor) technology is the most popular technology for integrated circuits. In addition to advantages related with the electronics operation of the final device, the integration of MEMS with CMOS technology reduces the manufacturing costs significantly. Some of the MEMS devices with a wider variety of applications are the microcantilevers. These devices can be used for energy harvesting, in an atomic force microscopes or as sensors, as for example, for biodetection. Most of the piezoelectric materials used for these MEMS applications are synthesized at high temperature and consequently are not compatible with CMOS technology. In our case we have used aluminum nitride (AlN), which is deposited at room temperature and hence fully compatible with CMOS technology. Otherwise, it is biocompatible and and can be used to compose a biosensing device. During this thesis work we have specially focused our attention in developing a high throughput, reproducible and low cost fabrication process. All the manufacturing process steps of have been thoroughly optimized in order to achieve this goal. Sputtering parameters to synthesize AlN, different techniques and etching recipes, electrode material and sacrificial layers are some of the key factors studied in this work to develop the manufacturing process. Once the AlN microcantilevers fabrication was optimized, they were measured to characterize their piezoelectric properties and to successfully check their viability as piezoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin information processing is a possible new paradigm for post-CMOS (complementary metal-oxide semiconductor) electronics and efficient spin propagation over long distances is fundamental to this vision. However, despite several decades of intense research, a suitable platform is still wanting. We report here on highly efficient spin transport in two-terminal polarizer/analyser devices based on high-mobility epitaxial graphene grown on silicon carbide. Taking advantage of high-impedance injecting/detecting tunnel junctions, we show spin transport efficiencies up to 75%, spin signals in the mega-ohm range and spin diffusion lengths exceeding 100μm. This enables spintronics in complex structures: devices and network architectures relying on spin information processing, well beyond present spintronics applications, can now be foreseen. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract | Electrical switching which has applications in areas such as information storage, power control, etc is a scientifically interesting and technologically important phenomenon exhibited by glassy chalcogenide semiconductors. The phase change memories based on electrical switching appear to be the most promising next generation non-volatile memories, due to many attributes which include high endurance in write/read operations, shorter write/read time, high scalability, multi-bit capability, lower cost and a compatibility with complementary metal oxide semiconductor technology.Studies on the electrical switching behavior of chalcogenide glasses help us in identifying newer glasses which could be used for phase change memory applications. In particular, studies on the composition dependence of electrical switching parameters and investigations on the correlation between switching behavior with other material properties are necessary for the selection of proper compositions which make good memory materials.In this review, an attempt has been made to summarize the dependence of the electrical switching behavior of chalcogenide glasses with other material properties such as network topological effects, glass transition & crystallization temperature, activation energy for crystallization, thermal diffusivity, electrical resistivity and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip. © 2011 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate a self-aligned approach for the fabrication of nanoscale hybrid silicon-plasmonic waveguide fabricated by local oxidation of silicon (LOCOS). Implementation of the LOCOS technique provides compatibility with standard complementary metal-oxide-semiconductor technology and allows avoiding lateral misalignment between the silicon waveguide and the upper metallic layer. We directly measured the propagation and the coupling loss of the fabricated hybrid waveguide using a near-field scanning optical microscope. The demonstrated structure provides nanoscale confinement of light together with a reasonable propagation length of ∼100 μm. As such, it is expected to become an important building block in future on-chip optoelectronic circuitry. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.