969 resultados para common tree species


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location Europe. Methods We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to characterize cultivated genotypes of three jabuticaba species (Plinia cauliflora, P. trunciflora, and P. jaboticaba). Phenology and fruit growth, as well as leaf, flower and fruit traits were evaluated. Variability in all traits was observed among genotypes of the three jabuticaba species. The trait peduncle size is indicated for differentiation of the three species under study. The leaf and fruit sizes of the genotypes P. trunciflora 3, P. trunciflora 4, P. trunciflora 5 and P. jaboticaba 1 differ from those described in the literature for these species, indicating the formation of ecotypes. Jabuticaba fruit skin contains high anthocyanin and flavonoid concentrations, with potential use in food and pharmaceutical industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The characterization of different ecological groups in a forest formation/succession is unclear. To better define the different successional classes, we have to consider ecophysiological aspects, such as the capacity to use or dissipate the light energy available. The main objective of this work was to assess the chlorophyll fluorescence emission of tropical tree species growing in a gap of a semi-deciduous forest. Three species of different ecological groups were selected: Croton floribundus Spreng. (pioneer, P), Astronium graveolens Jacq. (early secondary, Si), and Esenbeckia febrifuga A. Juss. (late secondary, St). The potential (Fv/Fm) and effective (deltaF/Fm') quantum efficiency of photosystem II, apparent electron transport rate (ETR), non-photochemical (qN) and photochemical (qP) quenching of fluorescence were evaluated, using a modulated fluorometer, between 7:30 and 11:00 h. Values of Fv/Fm remained constant in St, decreasing in P and Si after 9:30 h, indicating the occurrence of photoinhibition. Concerning the measurements taken under light conditions (deltaF/Fm', ETR, qP and qN), P and Si showed better photochemical performance, i.e., values of deltaF/Fm', ETR and qP were higher than St when light intensity was increased. Values of qN indicated that P and Si had an increasing tendency of dissipating the excess of energy absorbed by the leaf, whereas the opposite was found for St. The principal component analysis (PCA), considering all evaluated parameters, showed a clear distinction between St, P and Si, with P and Si being closer. The PCA results suggest that chlorophyll fluorescence may be a potential tool to differentiate tree species from distinct successional groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silvicultural and ecological knowledge about tree species is basic to restoration planning, particularly in high diversity regions. Here we present a comparison of four native tree species from the middle Uruguay River basin, Brazil-Argentine frontier: Heliocarpus americanus L. (Malvaceae), Maclura tinctoria (L.) D. Don ex Steud. (Moraceae), Schinus terebinthifolius Raddi (Anacardiaceae) and Cordia trichotoma (Vell.) Arrab. ex Steud. (Boraginaceae). We obtained data on initial growth, light interception, litterfall and litter mineral contents. H. americanus presented the greatest height and the lowest value of height/crown width ratio. H. americanus and M. tinctoria presented the highest light interception rate (>94 %) and highest litterfall (879 ± 151 and 792 ± 164 g·m-2·year-1, respectively). For the set of species, the lowest litterfall occurred between July and September. H. americanus presented the highest K concentration (1.13%) in the litter, while C. trichotoma had the highest values of Ca and Mg (6.35 and 2.02 %, respectively). S. terebinthifolius had the lowest light interception rate and litter mineral content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to test the hypothesis that the distribution of tree species in a fragment of submontane seasonal semideciduous forest, a buffer zone in the Parque Estadual do Rio Doce, Minas Gerais, is influenced by geomorphological and weather and soil variables, therefore it can represent a source of information for the restoration of degraded areas where environmental conditions are similar to those of the study area. A detailed soil survey was conducted in the area by sampling three soil profiles per slope segment, totaling 12 profiles. To sample the topsoil, four composite samples were collected from the 10-20 cm layers in each topographic range totaling 16 composite samples. In the low ramp and the lower and upper concave slopes, the texture ranged from clay to sandy-clay. The soil and topographic gradient was characterized by changes in the soil physical-chemical properties. The soil in the 10-20 cm sampled layer was sandier, slightly more fertile and less acid in the low ramp than the clayer soil, nutrient-poor and highly acid soil at the top. The soil conditions in the lower and upper slope of the sampled layers, in turn, were intermediate. The P levels were limiting in all soils. The species distribution along the topographic gradient was associated with variations in chemical fertility, acidity and soil texture. The distribution of Pera leandri, Astronium fraxinifolium, Pouteria torta, Machaerium brasiliense and Myrcia rufipes was correlated with high aluminum levels and to low soil fertility and these species may be indicated for restoration of degraded areas on hillsides and hilltops in regions where environmental conditions are similar. The distribution of Pouteria venosa, Apuleia leiocarpa and Acacia polyphylla was correlated with the less acid and more fertile soil in the environment of the low ramps, indicating the potential for the restoration of similar areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1) and plant age. The species were evaluated every 90 days for plant height (PH), crown diameter (CD) and root collar diameter (RCD) (10 cm above the ground), with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH) (1.30 m above the ground). A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3) were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a) gliricidia (G) and sabiá (S), as a response to planting density; b) G, S, and neem (N) in competition; c) G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1) as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants). E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the growth and floristic composition of species that grow under the canopy of trees is important for weed control (WC). The objective of this study was to assess two experiments (E1 and E2), when the trees were two years and one year of age, respectively. In E1, sabiá (S) and gliricidia (G) were submitted to planting densities from 400 to 1.200 plants ha-1. In E2, growing systems consisting of S, G, and neem (N) combinations were compared: SSS, GGG, NNN, GSG, NSN, SGS, NGN, SNS, and GNG (each letter represents a row of plants). A random block design was adopted, with three (E1) and four (E2) replicates. In E1, treatments were arranged as split-plots (species in plots). In E2, the degrees of freedom for treatments (8) were partitioned into growing systems (treatments that involved the same species) and between growing system groups (2). Twenty-one weed species were found in E1. Gliricidia attained greater plant height than sabiá, but these species did not differ in canopy diameter, number of weed species per plot, and weed green and dry biomass of the shoot. Higher planting densities resulted in the reduction of all those traits. Twenty-six weed species were found in E2. Growing systems that included gliricidia showed canopies with greater diameters than growing systems that included neem. There were no differences between growing systems for number of weed species per plot and for weed green and dry biomass of the shoot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The combination of crop residues or crop extracts is often more advantageous in controlling weeds, than the application of each residue or extract singly. This suggests that in intercropping with maize, the combination of tree species can be more advantageous than species isolated in weed control. The objective of this study was to evaluate the effects of intercropping with a combination of leguminous on the weed growth and corn yield. A randomized-block design with split plots (cultivars in plots) and five replicates was established. The cultivars BR 205 and AG 1041 were subject to the following treatments: two weedings (A), intercropping with sabiá (B), gliricidia (C), gliricidia + sabiá (D) and no weeding (E). In the B and C, 30 viable seeds m-2 of the leguminous were sown. In the D, 15 seeds of each species were sown m-2. The legumes were sown by random casting during corn planting. The sequence of the best treatments in reducing the growth of weeds is A > B = C = D = E. The sequence of the best treatments when are considered the yields of baby corn, green corn and grain is A > B > C > D > E. The cultivars do not differ in regards to the reduction in weed growth. In terms of corn yield cultivar BR 205 is the best.