988 resultados para cognitive modeling
Resumo:
This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation), cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in students' mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5 through 10; Mage = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze growth in achievement. Results showed that the initial level of achievement was strongly related to intelligence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no relation with the growth of achievement over years, whereas motivation and learning strategies were predictors of growth. These findings highlight the importance of motivation and learning strategies in facilitating adolescents' development of mathematical competencies.
Resumo:
The Complex Adaptive Systems, Cognitive Agents and Distributed Energy (CASCADE) project is developing a framework based on Agent Based Modelling (ABM). The CASCADE Framework can be used both to gain policy and industry relevant insights into the smart grid concept itself and as a platform to design and test distributed ICT solutions for smart grid based business entities. ABM is used to capture the behaviors of diff erent social, economic and technical actors, which may be defi ned at various levels of abstraction. It is applied to understanding their interactions and can be adapted to include learning processes and emergent patterns. CASCADE models ‘prosumer’ agents (i.e., producers and/or consumers of energy) and ‘aggregator’ agents (e.g., traders of energy in both wholesale and retail markets) at various scales, from large generators and Energy Service Companies down to individual people and devices. The CASCADE Framework is formed of three main subdivisions that link models of electricity supply and demand, the electricity market and power fl ow. It can also model the variability of renewable energy generation caused by the weather, which is an important issue for grid balancing and the profi tability of energy suppliers. The development of CASCADE has already yielded some interesting early fi ndings, demonstrating that it is possible for a mediating agent (aggregator) to achieve stable demandfl attening across groups of domestic households fi tted with smart energy control and communication devices, where direct wholesale price signals had previously been found to produce characteristic complex system instability. In another example, it has demonstrated how large changes in supply mix can be caused even by small changes in demand profi le. Ongoing and planned refi nements to the Framework will support investigation of demand response at various scales, the integration of the power sector with transport and heat sectors, novel technology adoption and diffusion work, evolution of new smart grid business models, and complex power grid engineering and market interactions.
Resumo:
A major problem in e-service development is the prioritization of the requirements of different stakeholders. The main stakeholders are governments and their citizens, all of whom have different and sometimes conflicting requirements. In this paper, the prioritization problem is addressed by combining a value-based approach with an illustration technique. This paper examines the following research question: How can multiple stakeholder requirements be illustrated from a value-based perspective in order to be prioritizable? We used an e-service development case taken from a Swedish municipality to elaborate on our approach. Our contributions are: 1) a model of the relevant domains for requirement prioritization for government, citizens, technology, finances and laws and regulations; and 2) a requirement fulfillment analysis tool (RFA) that consists of a requirement-goal-value matrix (RGV), and a calculation and illustration module (CIM). The model reduces cognitive load, helps developers to focus on value fulfillment in e-service development and supports them in the formulation of requirements. It also offers an input to public policy makers, should they aim to target values in the design of e-services.
Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the book Conceptual Spaces: the Geometry of Thought [2000] Peter Gärdenfors proposes a new framework for cognitive science. Complementary to symbolic and subsymbolic [connectionist] descriptions, conceptual spaces are semantic structures constructed from empirical data representing the universe of mental states. We argue that Gärdenfors' modeling can be used in consciousness research to describe the phenomenal conscious world, its elements and their intrinsic relations. The conceptual space approach affords the construction of a universal state space of human consciousness, where all possible kinds of human conscious states could be mapped. Starting from this approach, we discuss the inclusion of feelings and emotions in conceptual spaces, and their relation to perceptual and cognitive states. Current debate on integration of affect/emotion and perception/cognition allows three possible descriptive alternatives: emotion resulting from basic cognition; cognition resulting from basic emotion, and both as relatively independent functions integrated by brain mechanisms. Finding a solution for this issue is an important step in any attempt of successful modeling of natural or artificial consciousness. After making a brief review of proposals in this area, we summarize the essentials of a new model of consciousness based on neuro-astroglial interactions. © 2011 World Scientific Publishing Company.
Resumo:
Sustainable computer systems require some flexibility to adapt to environmental unpredictable changes. A solution lies in autonomous software agents which can adapt autonomously to their environments. Though autonomy allows agents to decide which behavior to adopt, a disadvantage is a lack of control, and as a side effect even untrustworthiness: we want to keep some control over such autonomous agents. How to control autonomous agents while respecting their autonomy? A solution is to regulate agents’ behavior by norms. The normative paradigm makes it possible to control autonomous agents while respecting their autonomy, limiting untrustworthiness and augmenting system compliance. It can also facilitate the design of the system, for example, by regulating the coordination among agents. However, an autonomous agent will follow norms or violate them in some conditions. What are the conditions in which a norm is binding upon an agent? While autonomy is regarded as the driving force behind the normative paradigm, cognitive agents provide a basis for modeling the bindingness of norms. In order to cope with the complexity of the modeling of cognitive agents and normative bindingness, we adopt an intentional stance. Since agents are embedded into a dynamic environment, things may not pass at the same instant. Accordingly, our cognitive model is extended to account for some temporal aspects. Special attention is given to the temporal peculiarities of the legal domain such as, among others, the time in force and the time in efficacy of provisions. Some types of normative modifications are also discussed in the framework. It is noteworthy that our temporal account of legal reasoning is integrated to our commonsense temporal account of cognition. As our intention is to build sustainable reasoning systems running unpredictable environment, we adopt a declarative representation of knowledge. A declarative representation of norms will make it easier to update their system representation, thus facilitating system maintenance; and to improve system transparency, thus easing system governance. Since agents are bounded and are embedded into unpredictable environments, and since conflicts may appear amongst mental states and norms, agent reasoning has to be defeasible, i.e. new pieces of information can invalidate formerly derivable conclusions. In this dissertation, our model is formalized into a non-monotonic logic, namely into a temporal modal defeasible logic, in order to account for the interactions between normative systems and software cognitive agents.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
In this thesis, we extend some ideas of statistical physics to describe the properties of human mobility. By using a database containing GPS measures of individual paths (position, velocity and covered space at a spatial scale of 2 Km or a time scale of 30 sec), which includes the 2% of the private vehicles in Italy, we succeed in determining some statistical empirical laws pointing out "universal" characteristics of human mobility. Developing simple stochastic models suggesting possible explanations of the empirical observations, we are able to indicate what are the key quantities and cognitive features that are ruling individuals' mobility. To understand the features of individual dynamics, we have studied different aspects of urban mobility from a physical point of view. We discuss the implications of the Benford's law emerging from the distribution of times elapsed between successive trips. We observe how the daily travel-time budget is related with many aspects of the urban environment, and describe how the daily mobility budget is then spent. We link the scaling properties of individual mobility networks to the inhomogeneous average durations of the activities that are performed, and those of the networks describing people's common use of space with the fractional dimension of the urban territory. We study entropy measures of individual mobility patterns, showing that they carry almost the same information of the related mobility networks, but are also influenced by a hierarchy among the activities performed. We discover that Wardrop's principles are violated as drivers have only incomplete information on traffic state and therefore rely on knowledge on the average travel-times. We propose an assimilation model to solve the intrinsic scattering of GPS data on the street network, permitting the real-time reconstruction of traffic state at a urban scale.
Resumo:
Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.
Resumo:
Cognitive impairments are currently regarded as important determinants of functional domains and are promising treatment goals in schizophrenia. Nevertheless, the exact nature of the interdependent relationship between neurocognition and social cognition as well as the relative contribution of each of these factors to adequate functioning remains unclear. The purpose of this article is to systematically review the findings and methodology of studies that have investigated social cognition as a mediator variable between neurocognitive performance and functional outcome in schizophrenia. Moreover, we carried out a study to evaluate this mediation hypothesis by the means of structural equation modeling in a large sample of 148 schizophrenia patients. The review comprised 15 studies. All but one study provided evidence for the mediating role of social cognition both in cross-sectional and in longitudinal designs. Other variables like motivation and social competence additionally mediated the relationship between social cognition and functional outcome. The mean effect size of the indirect effect was 0.20. However, social cognitive domains were differentially effective mediators. On average, 25% of the variance in functional outcome could be explained in the mediation model. The results of our own statistical analysis are in line with these conclusions: Social cognition mediated a significant indirect relationship between neurocognition and functional outcome. These results suggest that research should focus on differential mediation pathways. Future studies should also consider the interaction with other prognostic factors, additional mediators, and moderators in order to increase the predictive power and to target those factors relevant for optimizing therapy effects.
Resumo:
Madagascar’s terrestrial and aquatic ecosystems have long supported a unique set of ecological communities, many of whom are endemic to the tropical island. Those same ecosystems have been a source of valuable natural resources to some of the poorest people in the world. Nevertheless, with pride, ingenuity and resourcefulness, the Malagasy people of the southwest coast, being of Vezo identity, subsist with low development fishing techniques aimed at an increasingly threatened host of aquatic seascapes. Mangroves, sea grass bed, and coral reefs of the region are under increased pressure from the general populace for both food provisions and support of economic opportunity. Besides purveyors and extractors, the coastal waters are also subject to a number of natural stressors, including cyclones and invasive, predator species of both flora and fauna. In addition, the aquatic ecosystems of the region are undergoing increased nutrient and sediment runoff due, in part, to Madagascar’s heavy reliance on land for agricultural purposes (Scales, 2011). Moreover, its coastal waters, like so many throughout the world, have been proven to be warming at an alarming rate over the past few decades. In recognizing the intimate interconnectedness of the both the social and ecological systems, conservation organizations have invoked a host of complimentary conservation and social development efforts with the dual aim of preserving or restoring the health of both the coastal ecosystems and the people of the region. This paper provides a way of thinking more holistically about the social-ecological system within a resiliency frame of understanding. Secondly, it applies a platform known as state-and-transition modeling to give form to the process. State-and-transition modeling is an iterative investigation into the physical makeup of a system of study as well as the boundaries and influences on that state, and has been used in restorative ecology for more than a decade. Lastly, that model is sited within an adaptive management scheme that provides a structured, cyclical, objective-oriented process for testing stakeholders cognitive understanding of the ecosystem through a pragmatic implementation and monitoring a host of small-scale interventions developed as part of the adaptive management process. Throughout, evidence of the application of the theories and frameworks are offered, with every effort made to retool conservation-minded development practitioners with a comprehensive strategy for addressing the increasingly fragile social-ecological systems of southwest Madagascar. It is offered, in conclusion, that the seascapes of the region would be an excellent case study worthy of future application of state-and-transition modeling and adaptive management as frameworks for conservation-minded development practitioners whose multiple projects, each with its own objective, have been implemented with a single goal in mind: preserve and protect the state of the supporting environment while providing for the basic needs of the local Malagasy people.
Resumo:
Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.
Resumo:
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link.
Resumo:
Objectives: The final goal in the successful treatment of schizophrenia patients is defined in improved functional recovery. Thus the integration of social cognitive tasks within a comprehensive treatment concept should offer significant advantages in generalization and transfer of therapy effects. Recent therapy outcome research supports these advantages. Empirical modeling identified social cognition as a mediating factor between neurocognition and functional recovery. Regarding this, we first developed the Integrated Psychological Therapy Program (IPT). It consists of 5 subprograms and combines interventions on neurocognition, social cognition, and social competence. As a further development of the cognitive part of IPT we developed the Integrated Neurocognitive Therapy (INT), which focuses on all social and neurocognitive domains defined by MATRICS. Methods: The aim was to investigate whether the application of the complete IPT is superior in comparison to the use of single IPT subprograms. Data were based on 37 independent IPT studies including a total sample of 1692 schizophrenia patients. Additionally, the proximal outcome in cognitive domains as well as in more distal outcome areas was investigated in an international RCT on INT including 169 schizophrenia outpatients. Results: All IPT subprogram variations obtained significant effects in proximal outcome. Each subprogram domain reached the largest effects in the targeted area. With regard to distal outcomes, combinations of subprograms showed a significant reduction of negative symptoms and an improvement in not targeted areas of functioning. This strongly supports vertical generalization effects to other functional domains. Regarding INT, results support efficacy compared to TAU in various cognitive domains, in psychosocial functioning and symptoms after therapy and at 1-year-follow-up. Conclusion: Results support evidence for the efficacy of longer lasting integrated therapy. The success of these treatment concepts is strongly based on successful therapy of social cognitive functions.