897 resultados para cod gadus-morhua
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
A 4500-year archaeological record of Pacific cod (Gadus macrocephalus) bones from Sanak Island, Alaska, was used to assess the sustainability of the modern fishery and the effects of this fishery on the size of fish caught. Allometric reconstructions of Pacific cod length for eight prehistoric time periods indicated that the current size of the nearshore, commercially fished Pacific cod stocks is statistically unchanged from that of fish caught during 4500 years of subsistence harvesting. This finding indicates that the current Pacific cod fishery that uses selective harvesting technolog ies is a sustainable commercial fishery. Variation in relative Pacific cod abundances provides further insights into the response of this species to punctuated changes in ocean climate (regime shifts) and indicates that Pacific cod stocks can recover from major environmental perturbations. Such palaeofisheries data can extend the short time-series of fisheries data (<50 yr) that form the basis for fisheries management in the Gulf of Alaska and place current trends within the context of centennial- or millennial-scale patterns.
Resumo:
Groundfish fisheries in the southeast Bering Sea in Alaska have been constrained in recent years by management measures to protect the endangered Steller sea lion (Eumetopias jubatus). There is concern that the present commercial harvest may produce a localized depletion of groundfish that would affect the foraging success of Steller sea lions or other predators. A three-year field experiment was conducted to determine whether an intensive trawl fishery in the southeast Bering Sea created a localized depletion in the abundance of Pacific cod (Gadus macrocephalus). This experiment produced strongly negative results; no difference was found in the rate of seasonal change in Pacific cod abundance between stations within a regulatory no-trawl zone and stations in an immediately adjacent trawled area. Corollary studies showed that Pacific cod in the study area were highly mobile and indicated that the geographic scale of Pacific cod movement was larger than the spatial scale used as the basis for current no-trawl zones. The idea of localized depletion is strongly dependent on assumed spatial and temporal scales and contains an implicit assumption that there is a closed local population. The scale of movement of target organisms is critical in determining regional effects of fishery removals.
Resumo:
This study investigates the temporal stability of length- and age-at-maturity estimates for female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and eastern Bering Sea. Females reached 50% maturity (A50) at 4.4 years in the Gulf of Alaska and at 4.9 years in the eastern Bering Sea. Total body length at 50% maturity (LT50) was significantly smaller (503 mm) in the Gulf of Alaska than in the eastern Bering Sea (580 mm). The estimated length- and age-at-maturity did not differ significantly between winter and spring in either the Gulf of Alaska (1999) or Bering Sea (2003) areas. The results of this study raised the spawning biomass estimate of female Alaskan Pacific cod from 298×103 t for 2005 to 499×103 t for 2006. The increased spawning biomass estimate resulted in an increased over-fishing limit for Pacific cod.
Resumo:
Survey- and fishery-derived biomass estimates have indicated that the harvest indices for Pacific cod (Gadus macrocephalus) within a portion of Steller sea lion (Eumetopias jubatus) critical habitat in February and March 2001 were five to 16 times greater than the annual rate for the entire Bering Sea-Aleutian Islands stock. A bottom trawl survey yielded a cod biomass estimate of 49,032 metric tons (t) for the entire area surveyed, of which less than half (23,329 t) was located within the area used primarily by the commercial fishery, which caught 11,631 t of Pacific cod. Leslie depletion analyses of fishery data yielded biomass estimates of approximately 14,500 t (95% confidence intervals of approximately 9,000–25,000 t), which are within the 95% confidence interval on the fished area survey estimate (12,846–33,812 t). These data indicate that Leslie analyses may be useful in estimating local fish biomass and harvest indices for certain marine fisheries that are well constrained spatially and relatively short in duration (weeks). In addition, fishery effects on prey availability within the time and space scales relevant to foraging sea lions may be much greater than the effects indicated by annual harvest rates estimated from stock assessments averaged across the range of the target spec
Resumo:
Two examples of indirect validation are described for age-reading methods of Pacific cod (Gadus macrocephalus). Aging criteria that exclude faint translucent zones (checks) in counts of annuli and criteria that include faint zones were both tested. Otoliths from marked and recaptured fish were used to back-calculate the length of each fish at the time of its release by using measurements of the area of annuli. Estimated fish size at time of release and actual observed fish size were similar, supporting the assumption that translucent zones are laid down on an annual basis. A second method for validating reading criteria used otolith age and von Bertalanffy parameters, estimated from the tagging data, to predict how much each fish grew in length after tagging. We found that otolith aging criteria applied to otoliths from tagged and recovered Pacific cod predicted quite accurately the growth increments that we observed in these specimens. These results provide further evidence that the current aging criteria are not underestimating the age of the fish and support our current interpretation of checks (i.e., as subannual marks). We expect these indirect validations to advance age determination for Pacific cod, which in turn would enhance development of stock assessment methods based on age structure for this species in the eastern Bering Sea.
Resumo:
The diet of Pacific cod (Gadus macrocephalus) in the area of Pavlof Bay, Alaska, was studied in the early 1980s by Albers and Anderson (1985). They found that the dominant prey species were forage species like pandalid shrimp, capelin (Mallotus villosus), and walleye pollock (Theragra chalcogramma). The shrimp fishery in Pavlof Bay began in 1968 and closed in 1980 because of low shrimp abundance (Ruccio and Worton1). Survey data indicate that, during the period between 1972 and 1997, the abundance of forage species such as pandalid shrimp and capelin declined and higher trophic-level groundfish such as Pacific cod increased. There is a general recognition that a long-term ocean climate shift in the Gulf of Alaska has been partially responsible for the observed reorganization of the community structure (Anderson and Piatt, 1999).