948 resultados para clinical isolates
Resumo:
Epidemiological investigations of Clostridium difficile often focus on differences between separate geographical areas. In this investigation, two populations of C. difficile recovered from separate tertiary referral Trusts within the West Midlands, UK, were characterized using both PCR ribotyping and an optimized RAPD (random amplification of polymorphic DNA) protocol. The PCR ribotyping and RAPD methodologies identified differences between the two C. difficile populations, in both the prevalence and the diversity of types identified. The use of PCR ribotyping in conjunction with RAPD further categorized different types within defined PCR ribotypes, identifying different types within the same PCR ribotype and therefore providing a greater discriminatory power than either of the methods when used alone. The differences observed in this study between the two Trusts in the distribution of both RAPD 'type' and PCR ribotype demonstrate the diversity that is present amongst isolates of C. difficile within a relatively small geographical area and warrants a need for further investigation into the local epidemiology of C. difficile.
Resumo:
Random amplification of polymorphic DNA (RAPD) was evaluated as a genotypic method for typing clinical strains of Propionibacterium acnes. RAPD can suffer from problems of reproducibility if parameters are not standardised. In this study the reaction conditions were optimised by adjusting template DNA concentration and buffer constituents. All isolates were typeable using the optimised RAPD protocol which was found to be highly discriminatory (Simpson's diversity index, 0.98) and reproducible. Typing of P. acnes by optimised RAPD is an invaluable tool for the epidemiological investigation of P. acnes for which no other widely accepted method currently exists. © 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Antibiotic resistance is an increasing problem in isolates of Staphylococcus aureus (S. aureus) worldwide. In 2001 The National Health Service in the UK introduced a mandatory bacteraemia surveillance scheme for the reporting of S. aureus and methicillin-resistant S. aureus (MRSA). This surveillance initiative reports on the percentage of isolates that are methicillin resistant. However, resistance to other antibiotics is not currently reported and therefore the scale of emerging resistance is currently unclear in the UK. In this study, multiple antibiotic resistance (MAR) profiles against fourteen antimicrobial drugs were investigated for 705 isolates of S. aureus collected from two European study sites in the UK (London) and Malta.
Resumo:
We thank the staff of the Aberdeen Clinical Diagnostic Laboratory and the Centre for Genome-Enabled Biology and Medicine of the University of Aberdeen for their dedicated support to this study.
Resumo:
An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem- resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXYOprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.
Resumo:
The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of the ERG11 gene in clinical isolates of Candida known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 μg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
Plasmid pB1000 is a mobilizable replicon bearing the bla(ROB-1) beta-lactamase gene that we have recently described in Haemophilus parasuis and Pasteurella multocida animal isolates. Here we report the presence of pB1000 and a derivative plasmid, pB1000', in four Haemophilus influenzae clinical isolates of human origin. Pulsed-field gel electrophoresis showed unrelated patterns in all strains, indicating that the existence of pB1000 in H. influenzae isolates is not the consequence of clonal dissemination. The replicon can be transferred both by transformation and by conjugation into H. influenzae, giving rise to recipients resistant to ampicillin and cefaclor (MICs, > or =64 microg/ml). Stability experiments showed that pB1000 is stable in H. influenzae without antimicrobial pressure for at least 60 generations. Competition experiments between isogenic H. influenzae strains with and without pB1000 revealed a competitive disadvantage of 9% per 10 generations for the transformant versus the recipient. The complete nucleotide sequences of nine pB1000 plasmids from human and animal isolates, as well as the epidemiological data, suggest that animal isolates belonging to the Pasteurellaceae act as an antimicrobial resistance reservoir for H. influenzae. Further, since P. multocida is the only member of this family that can colonize both humans and animals, we propose that P. multocida is the vehicle for the transport of pB1000 between animal- and human-adapted members of the Pasteurellaceae.
Resumo:
This study compared virulence and antibiotic resistance traits in clinical and environmental E. faecalis and E. faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E and esp were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linozolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk.
Resumo:
M. fortuitum is a rapidly growing mycobacterium associated with community-acquired and nosocomial wound, soft tissue, and pulmonary infections. It has been postulated that water has been the source of infection especially in the hospital setting. The aim of this study was to determine if municipal water may be the source of community-acquired or nosocomial infections in the Brisbane area. Between 2007 and 2009, 20 strains of M. fortuitum were recovered from municipal water and 53 patients’ isolates were submitted to the reference laboratory. A wide variation in strain types was identified using repetitive element sequence-based PCR, with 13 clusters of ≥2 indistinguishable isolates, and 28 patterns consisting of individual isolates. The clusters could be grouped into seven similar groups (>95% similarity). Municipal water and clinical isolates collected during the same time period and from the same geographical area consisted of different strain types, making municipal water an unlikely source of sporadic human infection.
Resumo:
Mycobacterium kansasii is a pulmonary pathogen that has been grown readily from municipal water, but rarely isolated from natural waters. A definitive link between water exposure and disease has not been demonstrated and the environmental niche for this organism is poorly understood. Strain typing of clinical isolates has revealed seven subtypes with Type 1 being highly clonal and responsible for most infections worldwide. The prevalence of other subtypes varies geographically. In this study 49 water isolates are compared with 72 patient isolates from the same geographical area (Brisbane, Australia), using automated repetitive unit PCR (Diversilab) and ITS RFLP. The clonality of the dominant clinical strain type is again demonstrated but with rep-PCR, strain variation within this group is evident comparable with other reported methods. There is significant heterogeneity of water isolates and very few are similar or related to the clinical isolates. This suggests that if water or aerosol transmission is the mode of infection, then point source contamination likely occurs from an alternative environmental source.
Resumo:
Uropathogenic Escherichia coli is the primary cause of urinary tract infections, which affects over 60% of women during their lifetime. UPEC exhibits a number of virulence traits that facilitate colonization of the bladder, including inhibition of cytokine production by bladder epithelial cells. The goal of this study was to identify the mechanism of this inhibition. We observed that cytokine suppression was associated with rapid cytotoxicity toward epithelial cells. We found that cytotoxicity, cytokine suppression and alpha-hemolysin production were all tightly linked in clinical isolates. We screened a UPEC fosmid library and identified clones that gained the cytotoxicity and cytokine-suppression phenotypes. Both clones contained fosmids encoding a PAI II(J96)-like domain and expressed the alpha-hemolysin (hlyA) encoded therein. Mutation of the fosmid-encoded hly operon abolished cytotoxicity and cytokine suppression. Similarly, mutation of the chromosomal hlyCABD operon of UPEC isolate F11 also abolished these phenotypes, and they could be restored by introducing the PAI II(J96)-like domain-encoding fosmid. We also examined the role of alpha-hemolysin in cytokine production both in the murine UTI model as well as patient specimens. We conclude that E. coli utilizes alpha-hemolysin to inhibit epithelial cytokine production in vitro. Its contribution to inflammation during infection requires further study.
Resumo:
The MICs of ciprofloxacin for 33 clinical isolates of K. pneumoniae resistant to extended-spectrum cephalosporins from three hospitals in Singapore ranged from 0.25 to >128 microg/ml. Nineteen of the isolates were fluoroquinolone resistant according to the NCCLS guidelines. Strains for which the ciprofloxacin MIC was >or=0.5 microg/ml harbored a mutation in DNA gyrase A (Ser83-->Tyr, Leu, or IIe), and some had a secondary Asp87-->Asn mutation. Isolates for which the MIC was 16 microg/ml possessed an additional alteration in ParC (Ser80-->IIe, Trp, or Arg). Tolerance of the organic solvent cyclohexane was observed in 10 of the 19 fluoroquinolone-resistant strains; 3 of these were also pentane tolerant. Five of the 10 organic solvent-tolerant isolates overexpressed AcrA and also showed deletions within the acrR gene. Complementation of the mutated acrR gene with the wild-type gene decreased AcrA levels and produced a two- to fourfold reduction in the fluoroquinolone MICs. None of the organic solvent-tolerant clinical isolates overexpressed another efflux-related gene, acrE. While marA and soxS were not overexpressed, another marA homologue, ramA, was overexpressed in 3 of 10 organic solvent-tolerant isolates. These findings indicate that multiple target and nontarget gene changes contribute to fluoroquinolone resistance in K. pneumoniae. Besides AcrR mutations, ramA overexpression (but not marA or soxS overexpression) was related to increased AcrAB efflux pump expression in this collection of isolates.