895 resultados para classification and equivalence classes
Resumo:
Gestational trophoblastic neoplasia (GTN) is the term to describe a set of malignant placental diseases, including invasive mole, choriocarcinoma, placental site trophoblastic tumor and epithelioid trophoblastic tumor. Both invasive mole and choriocarcinoma respond well to chemotherapy, and cure rates are greater than 90%. Since the advent of chemotherapy, low-risk GTN has been treated with a single agent, usually methotrexate or actinomycin D. Cases of high-risk GTN, however, should be treated with multiagent chemotherapy, and the regimen usually selected is EMA-CO, which combines etoposide, methotrexate, actinomycin D, cyclophosphamide and vincristine. This study reviews the literature about GTN to discuss current knowledge about its diagnosis and treatment.
Resumo:
The aim of this study was to analyze clinical aspects, hearing evolution and efficacy of clinical treatment of patients with sudden sensorineural hearing loss (SSNHL). This was a prospective clinical study of 136 consecutive patients with SSNHL divided into three groups after diagnostic evaluation: patients with defined etiology (DE, N = 13, 10%), concurrent diseases (CD, N = 63, 46.04%) and idiopathic sudden sensorineural hearing loss (ISSHL, N = 60, 43.9%). Initial treatment consisted of prednisone and pentoxifylline. Clinical aspects and hearing evolution for up to 6 months were evaluated. Group CD comprised 73% of patients with metabolic decompensation in the initial evaluation and was significantly older (53.80 years) than groups DE (41.93 years) and ISSHL (39.13 years). Comparison of the mean initial and final hearing loss of the three groups revealed a significant hearing improvement for group CD (P = 0.001) and group ISSHL (P = 0.001). Group DE did not present a significant difference in thresholds. The clinical classification for SSNHL allows the identification of significant differences regarding age, initial and final hearing impairment and likelihood of response to therapy. Elevated age and presence of coexisting disease were associated with a greater initial hearing impact and poorer hearing recovery after 6 months. Patients with defined etiology presented a much more limited response to therapy. The occurrence of decompensated metabolic and cardiovascular diseases and the possibility of first manifestation of auto-immune disease and cerebello-pontine angle tumors justify an adequate protocol for investigation of SSNHL.
Resumo:
The objective of the present study was to evaluate the characteristics of acute kidney injury (AKI) in AIDS patients and the value of RIFLE classification for predicting outcome. The study was conducted on AIDS patients admitted to an infectious diseases hospital inBrazil. The patients with AKI were classified according to the RIFLE classification: R (risk), I (injury), F (failure), L (loss), and E (end-stage renal disease). Univariate and multivariate analyses were used to evaluate the factors associated with AKI. A total of 532 patients with a mean age of 35 ± 8.5 years were included in this study. AKI was observed in 37% of the cases. Patients were classified as "R" (18%), "I" (7.7%) and "F" (11%). Independent risk factors for AKI were thrombocytopenia (OR = 2.9, 95%CI = 1.5-5.6, P < 0.001) and elevation of aspartate aminotransferase (AST) (OR = 3.5, 95%CI = 1.8-6.6, P < 0.001). General mortality was 25.7% and was higher among patients with AKI (40.2 vs17%, P < 0.001). AKI was associated with death and mortality increased according to RIFLE classification - "R" (OR 2.4), "I" (OR 3.0) and "F" (OR 5.1), P < 0.001. AKI is a frequent complication in AIDS patients, which is associated with increased mortality. RIFLE classification is an important indicator of poor outcome for AIDS patients.
Resumo:
Female enthusiasm towards engaging in physical education (PE) significantly decreases with age as it provides females with positive and negative emotional experiences. This study examined emotions within four grade nine female PE soccer and fitness classes (N = 67). Emotional patterns were studied over time and across two units of instruction and in relation to student grades. A mixed-method approach was utilized assessing the state emotions of shame, enjoyment, anxiety, and social physique anxiety (SPA). Results revealed unsatisfactory internal consistency for shame and thus it was removed. Statistical analysis revealed no significant changes in emotions over time, whereas qualitative analysis found that state emotions were inconsistent. Statistical analysis indicated that students in the fitness classes reported significantly higher levels of anxiety and SPA on the final class (p < .01). Qualitative analysis signaled different origins and themes of students‟ emotions. No predictive relationship between emotion and students‟ grade was found.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
.
Resumo:
In this session we introduce inheritance - one of the cornerstone concepts of object oriented programming. We look at how to define super and sub-classes, how to maintain encapsulation using the super() constructor, and why it is useful to use substitution to hold references to sub-classes in references typed as their super-class.
Resumo:
Many important drugs in the Chinese materia medica (CMM) are known to be toxic, and it has long been recognized in classical Chinese medical theory that toxicity can arise directly from the components of a single CMM or may be induced by an interaction between combined CMM. Traditional Chinese Medicine presents a unique set of pharmaceutical theories that include particular methods for processing, combining and decocting, and these techniques contribute to reducing toxicity as well as enhancing efficacy. The current classification of toxic CMM drugs, traditional methods for processing toxic CMM and the prohibited use of certain combinations, is based on traditional experience and ancient texts and monographs, but accumulating evidence increasingly supports their use to eliminate or reduce toxicity. Modern methods are now being used to evaluate the safety of CMM; however, a new system for describing the toxicity of Chinese herbal medicines may need to be established to take into account those herbs whose toxicity is delayed or otherwise hidden, and which have not been incorporated into the traditional classification. This review explains the existing classification and justifies it where appropriate, using experimental results often originally published in Chinese and previously not available outside China.
Resumo:
Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.
Resumo:
In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.