979 resultados para circuit oscillations
Resumo:
Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degreesC warmer than at present and atmospheric CO2 concentrations were twice as high as today(1), the Antarctic ice sheets may have been unstable(2-7). Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles(8-10). But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets(11). Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glaci-marine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mil event(5)).
Resumo:
We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the pump power. We find that there exist parameter windows where modulation of the pump power extinguishes the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the pump and laser output follow the Farey sequence.
Resumo:
A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed Leizhou Events in this paper. This period (corresponding to C-14 age of 6.2 -6.7 kaBP or calendar age of 6.7-7.2 kaBP), when the climatic conditions were ideal for coral. reefs to develop, can be divided into at least nine stages. Each stage (or called a climate optimum), lasting about 20 to 50 a, was terminated by an abrupt cold nap and (or) a sea-level lowering event in winter, leading to widespread emergence and death of the Goniopora corals, and growth discontinuities on the coral surface. Such a cyclic process resulted in the creation of a > 4m thick Goniopora reef flat. During this period, the crust subsided periodically but the sea level was rising. The reef profile provides valuable archives for the study of decadal-scale mid-Holocene climatic oscillations in the tropical area of South China. Our results provide new evidence for high-frequency climate instability in the Holocene Hypsithermal, and challenge the traditional understanding of Holocene climate.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.
Resumo:
Evidence for nearly synchronous climate oscillations during the last deglaciation has been found throughout the Northern Hemisphere but few records are based on independent time scales of calendar years. We present a rare uranium-series dated oxygen-carbon isotope record for a speleothem from Tangshan Cave, China, which demonstrates that abrupt deglacial climatic oscillations from 16 800 to 10 500 yr BP are semi-synchronous with those found in Greenland ice core records. Relatively rapid shifts in speleothem oxygen isotope ratios demonstrate that the intensity of the East Asian monsoon switched in parallel with the abrupt transitions separating the Bolling-Allerod, Younger Dryas, and pre-Boreal climatic reversals. However, the dated isotopic transitions appear to have lasted longer. Our results demonstrate the dominant role of atmospheric teleconnections in the rapid propagation of deglacial climatic signals on a hemispheric scale, and highlight the importance of U-series dated speleothems in the timing and characterization of abrupt climate change. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Resumo:
This study aimed to analyze the economic viability of the third milking in production systems using mechanical milking in a closed circuit, aiming to provide technicians and farmers with information to assist them in decision-making. Specifically, it intended: (a) to estimate the cost of one milking; (b) to estimate the cost of the third milking; (c) to develop a mathematical equation to estimate the minimum amount of milk produced with two milkings, from which it would be economically feasible to do the third milking. Data were collected from three dairy farms, from November 2010 to March 2011, keeping a twice-a-day milking frequency, with three data collections in each farm, totalizing nine collections. Considering the average data, it would be feasible to do the third milking if the average milk yield per day of lactating cows in a twice-a-day milking frequency was greater than or equal to 24.43 kg of milk.
Resumo:
The intensive use of semiconductor devices enabled the development of a repetitive high-voltage pulse-generator topology from the dc voltage-multiplier (VM) concept. The proposed circuit is based on an odd VM-type circuit, where a number of dc capacitors share a common connection with different voltage ratings in each one, and the output voltage comes from a single capacitor. Standard VM rectifier and coupling diodes are used for charging the energy-storing capacitors, from an ac power supply, and two additional on/off semiconductors in each stage, to switch from the typical charging VM mode to a pulse mode with the dc energy-storing capacitors connected in series with the load. Results from a 2-kV experimental prototype with three stages, delivering a 10-mu s pulse with a 5-kHz repetition rate into a resistive load, are discussed. Additionally, the proposed circuit is compared against the solid-state Marx generator topology for the same peak input and output voltages.
Resumo:
Characteristics of tunable wavelength filters based on a-SiC:H multi-layered stacked cells are studied both theoretically and experimentally. Results show that the light-activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal. The sensor is a bias wavelength current-controlled device that make use of changes in the wavelength of the background to control the power delivered to the load, acting a photonic active filter. Its gain depends on the background wavelength that controls the electrical field profile across the device.
Resumo:
A DC-DC step-up micro power converter for solar energy harvesting applications is presented. The circuit is based on a switched-capacitorvoltage tripler architecture with MOSFET capacitors, which results in an, area approximately eight times smaller than using MiM capacitors for the 0.131mu m CMOS technology. In order to compensate for the loss of efficiency, due to the larger parasitic capacitances, a charge reutilization scheme is employed. The circuit is self-clocked, using a phase controller designed specifically to work with an amorphous silicon solar cell, in order to obtain themaximum available power from the cell. This will be done by tracking its maximum power point (MPPT) using the fractional open circuit voltage method. Electrical simulations of the circuit, together with an equivalent electrical model of an amorphous silicon solar cell, show that the circuit can deliver apower of 1132 mu W to the load, corresponding to a maximum efficiency of 66.81%.
Resumo:
A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.
Resumo:
A start-up circuit, used in a micro-power indoor light energy harvesting system, is described. This start-up circuit achieves two goals: first, to produce a reset signal, power-on-reset (POR), for the energy harvesting system, and secondly, to temporarily shunt the output of the photovoltaic (PV) cells, to the output node of the system, which is connected to a capacitor. This capacitor is charged to a suitable value, so that a voltage step-up converter starts operating, thus increasing the output voltage to a larger value than the one provided by the PV cells. A prototype of the circuit was manufactured in a 130 nm CMOS technology, occupying an area of only 0.019 mm(2). Experimental results demonstrate the correct operation of the circuit, being able to correctly start-up the system, even when having an input as low as 390 mV using, in this case, an estimated energy of only 5.3 pJ to produce the start-up.
Resumo:
The main objective of this work was to evaluate the hypothesis that the greater transfer stability leads also to less volume of fumes. Using an Ar + 25%CO2 blend as shielding gas and maintaining constant the average current, wire feed speed and welding speed, bead-on-plate welds were carried out with plain carbon steel solid wire. The welding voltage was scanned to progressively vary the transfer stability. Using two conditions of low stability and one with high stability, fume generation was evaluated by means of the AWS F1.2:2006 standard. The influence of these conditions on fume morphology and composition was also verified. A condition with greater transfer stability does not generate less fume quantity, despite the fact that this condition produces fewer spatters. Other factors such as short-circuit current, arcing time, droplet diameters and arc length are the likely governing factors, but in an interrelated way. Metal transfer stability does not influence either the composition or the size/morphology of fume particulates. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 2713 – 2716, Seattle, EUA